
 Internet Backplane Protocol: C API 1.4
Yong Zheng Alessandro Bassi Micah Beck James S. Plank Rich Wolski

Department of Computer Science

University of Tennessee
Knoxville, TN 37996

[yong,abassi,mbeck,plank,rich]@cs.utk.edu

Abstract

 In this document, we present a description of the IBP version 1.4 C API. The current implementation of IBP supports
only synchronized client requests; all client IBP calls will block pending completion on the server(s) side, or the
expiration of the client’s timeout. Failure of an IBP client call is indicated by a return value of 0, or NULL, with a
special variable (IBP_errno) set to the appropriate error code.

1 IBP Data Structures

A few data structures are used through the IBP world.

1.1IBP capability

This is the basic building block of IBP. Its format is:

ibp://hostname:port/resourceid#key/WRMKey/WRM

• hostname The host name of IBP depot.

• port The port number on which IBP depot is running.

• resourceid The resource identification on IBP depot

• key The key can be roughly considered to be the filename.

• WRMKey The WriteKey/ ReadKey/ ManageKey is a value that allows the access to the right key for

 writing, reading,and managing.

• WRM This field can have only three values, and is linked to the field above. The values are:

 – WRITE
 – READ
 – MANAGE

1.2 Various data structures
1.2.1 struct ibp_depot

typedef struct ibp_depot {
#define IBP_MAX_HOSTNAME_LEN 256
 char host[IBP_MAX_HOSTNAME_LEN];
 int port;
 int rid;
} *IBP_depot;

• host : host name of IBP depot.
• port : the port number on which IBP depot is running.
• rid : resource identification. From version 1.4, IBP depot supports multiple resources, each resource is

assigned a unique integer called resource identification. A IBP depot must have a resource with resource id 0
called default resource.

1.2.2 struct ibp_attributes

typedef struct ibp_attributes {
 time_t duration;
 int reliability;
 int type;
} *IBP_attributes;

• duration : specifies the time at which the allocated storage area will be automatically purged from the pool
of storage areas managed by the server. Time is specified in seconds since the epoch (as returned by
UNIX’s time(2) function). A value of -1 indicates permanent status for the allocated storage area (it’ll be
only purged when no more clients have read access to it, otherwise it will be kept alive according to the
reliability property, see IBP_manage () call for detail).

• reliability : is a flag that determines how reliable the allocated storage area will be. The current version of
IBP supports two levels of reliability:

– IBP_HARD which guarantees the existence of the allocated storage area until it is removed due to

lack of readers as explained above.

– IBP_SOFT which declares the allocated area to be volatile, in the sense that the corresponding

IBP server can reclaim storage allocated to this area whenever site administration and/or IBP
server policy mandates such move. Stable storage is never reclaimed by IBP server as long as at
least one client has read access to that storage.

• type : is a flag that determines the type of storage allocated. The current version of IBP supports four types of

storage:

– IBP_BYTEARRAY which treats the allocated area as a flat bytearray. This will have the following

implications on future accesses to that storage area:

* Only the amount of available data will be returned if there are not enough data to satisfy the

read request at the time the request is received by the IBP server.
* Requests to write (append) to the allocated area will be denied if it leads to the total size of the

storage area exceeding the maximum allowable size specified in size.
* A maximum of one write operation can be actively writing to the storage area at any given

time; other write requests received by the server are queued pending completion of the
running write process.

* No limit is imposed on the number of simultaneous read accesses to the storage area. In
addition, due to the use of append-only semantics for write operations, a write operation
can be simultaneously active with any number of read operations to the same storage area.

– IBP_FIFO which causes the allocated storage area to be treated as a FIFO queue, with the following
implications:

* Read data is removed from storage area once read.
* Read requests will be blocked if not enough un-read data is available in the storage area. In

addition, no upper limit is placed on the size of data in read requests.
* Write requests will be blocked if there is not enough space in the storage area to complete

the write operation. In addition, there is no upper limit on the size of data involved in a
write operation to the storage area.

* Blocked operations will be un-blocked only when there is more data to read
(blocked read operation) or available space to write (blocked write operations)

* A maximum of one write operation and one read operation can be simultaneously
active at any given time. Further requests are blocked pending completion of
running operations.

– IBP_CIRQ which causes the allocated storage area to be treated as a Circular Queue, with the
following implications:

* Read data is removed from storage area once read.
* Read requests will be blocked if not enough un-read data is available in the storage area. In

addition, no upper limit is placed on the size of data in read requests.
* Write requests will NOT be blocked if there is not enough space in the storage area to complete

the write operation, but will overwrite the beginning of the queue. In addition, there is no
upper limit the size of data involved in a write operation to the storage area.

* Blocked operations will be un-blocked only when there is more
data to read (blocked read operation).

* A maximum of one write operation and one read operation can be simultaneously active at any
given time. Further requests are blocked pending completion of running operations.

– IBP_BUFFER which causes the allocated storage area to be treated as a restricted access flat storage
area, with the following properties:

* Only one process can be actively accessing the storage area for read and/or write operation at
any given time. Other requests are blocked pending completion of the one that has access to
the storage area at any given time.

* All write operations start at the beginning of the storage area, overwriting any data that had
been stored there previously (even if it had not been read).

* The amount of data available to area doperation at any given time is the amount that had
been stored by the last write call.

1.2.3 struct ibp_set_of_caps
#typedef char * IBP_cap ;
typedef struct ibp_set_of_caps {
 IBP_cap readCap;
 IBP_cap writeCap;
 IBP_cap manageCap;
} * IBP_set_of_caps;

The capabilities included in an IBP_set_of_caps object allow the client read access, write access, and management
access to a particular storage area, respectively.

1.2.4 struct ibp_capstatus

typedef struct ibp_capstatus {

int readRefCount;
int writeRefCount;
int currentSize;
int maxSize;
struct ibp_attributes attrib;

} * IBP_CapStatus;

readRefCount and writeRefCount hold the reference count for the read and write capabilities respectively (on
return from an IBP_PROBE command) and are ignored for the other IBP_manage() commands. currentSize holds the
current size of data stored in the underlying storage area(for storage areas of type IBP_FIFO and IBP_CIRQ it holds
the maximum size of the underlying storage area). maxSize holds the maximum size of the storage area, while attrib
holds the storage area attributes as defined earlier.

1.2.4 struct ibp_dptinfo
typedef struct ibp_dptinfo {
 unsigned long int StableStor;
 unsigned long int StableStorUsed;
 unsigned long int VolStor;
 unsigned long int VolStorUsed;
 long Duration;
 float majorVersion;
 float minorVersion;
 int rid;
 int type;
 long long HardConfigured;
 long long HardServed;
 long long HardAllocable;
 long long TotalConfigured;
 long long TotalServed;
 long long TotalUsed;
 long long SoftAllocable;
 int nDm;
 int *dmTypes;
 int nNFU;
 int *NFU;
} *IBP_DptInfo;

• StableStor hard storage size in MBytes. A deprecated field.
• StableStorUsed hard storage used in MBytes. A deprecated field.
• VolStor total storage size in MBytes. A deprecated field.
• VolStorUsed total used storage in MBytes. A deprecated field.
• Duration maximum allowed duration on IBP depot.
• majorVersion IBP depot major version number.
• minorVersion IBP depot minor version number.
• rid resource identification.
• type resource type. Currently, IBP depot supports two types of resource :

 – MEMORY ram resource.
 – DISK disk resource.

• HardConfigured total hard storage size specified by IBP depot administrator.
• HardServed actual total hard storage size provided by IBP depot.
• HardUsed hard storage used.
• HardAllocable free hard storage size.
• TotalConfigured total storage size specified by IBP depot administrator.
• TotalServed actual total storage size provided by IBP depot.
• TotalUsed total storage used.
• SoftAllocable free soft storage size.
• nDM number of data mover types supported by IBP depot.
• dmTypes array of data mover types.
• nNFU number of NFU operations supported by IBP depot.
• NFU array of nfu operations.

From version 1.4, IBP depot reports more information than previous version does. StableStor , StableStorUsed,
VolStor and VolStorUsed are deprecated fields and only used when IBP client communicates with 1.3 and older
depots.

1 .2.5 struct ibp_timer

typedef struct ibp_timer {

int ClientTimeout;
 int serverSync;
} *IBP_timer;

The two timers have a completely different function. The ClientTimeout indicates the time the application is

willing to wait for a response from the server. This parameter is used to improve the fault-tolerance of the IBP Client
Library, to prevent waiting forever from an answer from a hanged server; or in case the network connection is
particularly bad, or a very high latency time. The ServerSync is used as an ”or” condition: i.e., in a IBP_load operation
on IBP_FIFO type of allocation, the application program can ask for N bytes or whatever gathered after ServerSync
time. Another example is in a IBP_allocate(), if there is not enough of free space on IBP depot, IBP depot will hold the
request for amount of time specified by ServerSync until either more space are available or timeout. This can be very
helpful when another client is writing on the same media, and the application asking to load the data does not know
how many bytes are written, but it’s willing to wait for some time before giving up.

2 IBP Allocate

IBP_set_of_caps IBP_allocate (IBP_depot depot,
 IBP_timer timeout,
 unsigned long int size,
 IBP_attributes attributes)

IBP_allocate() allocates a remote storage area on the host depot with specified resource. The allocated area has a
maximum possible size of size bytes, and storage attributes, defined by attributes.

Return values

Upon success, IBP_allocate() returns an IBP_set_of_caps object. Otherwise, it returns a NULL pointer and sets
IBP_errno to one of the following values defined in ”ibp_protocol.h”

• IBP_INVALID_PARAMETER : One or more of the parameters to the IBP allocate() call has an
invalid value (e.g. NULL target host, invalid entry in attributes, ...)

• IBP_E_CLIENT_TIMEOUT : A client timeout occurs.
• IBP_E_CONNECTION : An error has occurred while trying to connect to the IBP server running

on target host.
• IBP_E_INVALID_RID : An invalid resource id.
• IBP_E_UNKNOWN_RS : Resource id can’t be found on IBP depot.
• IBP_E_SOCK_WRITE : An error has occurred while trying to write to the socket connection to the

IBP server.
• IBP_E_SOCK_READ : An error has occurred while trying to read response from the IBP server.
• IBP_E_BAD_FORMAT : Response from the IBP server does not have the expected format, or the IBP

server received a badly formatted request.
• IBP_E_INVALID_CMD : The IBP server has received a command it does not recognize.
• IBP_E_WOULD_EXCEED_LIMIT : Granting the request would cause the IBP server to exceed the

maximum storage limit allocated to the storage category defined in attributes.
• IBP_E_FILE_ACCESS : The IBP server has encountered an error while trying to access one or more

of its internal files that control access to the storage area.
• IBP_E_INTERNAL : The IBP server has encountered an internal error while processing the client’s

request.
• IBP_E_TYPE_NOT_SUPPORTED : A request to allocate a storage area of type IBP_FIFO was made

to an IBP server that does not support this type.

3 IBP store

unsigned long int IBP_store (IBP_cap cap,
 IBP_timer timeout,
 char data,
 unsigned long int size)

 IBP_store() stores size bytes starting at data in the storage area accessed through the IBP capability cap. For
this call to succeed, cap must be a write cap returned by an earlier call to IBP_allocate(), or imported from the
client which made the IBP_allocate() call. IBP_store() is a blocking call that only returns when the required size
of data is successfully stored at the desired storage area accessed through the IBP capability cap, or an error causes
the call to abort prematurely. The call appends data to the end of any previously stored data at the storage area
accessed through cap for storage areas of type IBP_BYTEARRAY, IBP_CIRQ and IBP_FIFO. Data written to a
storage area of type IBP_BUFFER overwrites any previous data (starting at the beginning of the buffer). If a
ServerSync time is set, the call will return either if all the data has been written, or the time has expired.

Return values

Upon success, IBP_store() returns the number of bytes written. Otherwise it returns 0 and sets IBP_errno to one
of the following error codes:

• IBP_E_WRONG_CAP_FORMAT : The IBP capability cap doesn’t have the proper format.
• IBP_E_CLIENT_TIMEOUT : A client timeout occurs.
• IBP_E_CAP_NOT_WRITE : The IBP capability cap is not a write capability.
• IBP_E_CONNECTION : An error has occurred while trying to connect to the IBP server running on

target host.
• IBP_E_SOCK_WRITE : An error has occurred while trying to write to the socket connection to the

IBP server.
• IBP_E_SOCK_READ : An error has occurred while trying to read response from the IBP server.
• IBP_E_BAD_FORMAT : Response from the IBP server does not have the expected format, or the IBP

server received a badly formatted request.
• IBP_E_INVALID_CMD : The IBP server has received a command it does not recognize.
• IBP_E_CAP_NOT_FOUND : The storage area accessed through cap does not exist on the associated

IBP server.
• IBP_E_CAP_ACCESS_DENIED : The storage area accessed through cap cannot be accessed for write

operations.
• IBP_E_SIZE_EXCEEDS_LIMIT : The write operation would cause the aggregate size of the storage

area to exceed the maximum size specified in the IBP_store() call. This error is only relevant for storage
areas of type IBP_BYTEARRAY.

• IBP_E_FILE_ACCESS: The IBP server has encountered an error while trying to access one or more of
its internal files that control access to the storage area.

• IBP_E_FILE_WRITE: The IBP server has encountered an error while attempting to store incoming
data to the underlying storage area.

• IBP_E_RSRC_UNAVAIL: A resource used by the IBP server was unavailable to service the request.
This error is only relevant when the underlying storage area has type IBP_FIFO.

• IBP_E_INTERNAL : The IBP server has encountered an internal error while processing the client’s
request.

4 IBP load

 unsigned long int IBP_load (IBP_cap cap,

 IBP_timer timeout,
 char *buf,
 unsigned long int size,
 unsigned long int offset)

IBP_load() reads up to size bytes, starting at offset, from the storage area accessed through the IBP capability
cap, into the memory area pointed by buf. For storage areas of type IBP_FIFO and IBP_CIRQ, offset is ignored. For
this call to succeed, cap must be read cap returned by an earlier call to IBP_allocate(), or imported from the client
which made the IBP_allocate() call. IBP_load() is a blocking call that returns only when all required data is read,
the ServerSync expires, or the read operation is prematurely terminated due to an error.

 Return values

Upon success, IBP_load() returns the number of bytes actually read, otherwise it returns 0 and sets IBP_errno
to one of the following error codes:

• IBP_E_INVALID_PARAMETER : One or more of the parameters to the IBP_load() call has an invalid

value(e.g. negative size, ...)
• IBP_E_CLIENT_TIMEOUT : A client timeout occurs.
• IBP_E_WRONG_CAP_FORMAT : The IBP capability cap doesn’t have the proper format.
• IBP_E_CAP_NOT_READ : The IBP capability cap is not a read capability.
• IBP_E_CONNECTION : An error has occurred while trying to connect to the IBP server running on

target host.
• IBP_E_SOCK_WRITE : An error has occurred while trying to write to the socket connection to the IBP

server.
• IBP_E_SOCK_READ : An error has occurred while trying to read response from the IBP server.
• IBP_E_BAD_FORMAT : Response from the IBP server does not have the expected format, or the IBP

server received a badly formatted request.
• IBP_E_INVALID_CMD : The IBP server has received a command it does not recognize.
• IBP_E_CAP_NOT_FOUND : The storage area accessed through cap does not exist on the associated IBP

server.
• IBP_E_CAP_ACCESS_DENIED : The storage area accessed through cap cannot be accessed for write

operations.
• IBP_E_FILE_ACCESS: The IBP server has encountered an error while trying to access one or more of

its internal files that control access to the storage area.
• IBP_E_FILE_READ: The IBP server has encountered an error while attempting to read incoming data to

the underlying storage area.
• IBP_E_RSRC_UNAVAIL: A resource used by the IBP server was unavailable to service the request.

This error is only relevant when the underlying storage area has type IBP_FIFO.
• IBP_E_INTERNAL : The IBP server has encountered an internal error while processing the

client’s request.

5 IBP copy

 unsigned long int IBP_copy (IBP_cap source,
 IBP_cap target,
 IBP_timer sourceTimeout,
 IBP_timer targetTimeout,
 unsigned long int size,
 unsigned long int offset)

IBP_copy() copies up to size bytes, starting at offset, from the storage area accessed through the IBP read
capability source, and writes them to the storage area accessed through the IBP write capability target. For
storage areas of type IBP_FIFO and IBP_CIRQ, offset is ignored. As in other read operation to an IBP_FIFO or
IBP_CIRQ storage area, data read from the storage area will no longer be available for future reads. For this call to
succeed, source must be a read cap returned by an earlier call to IBP_allocate(), or imported from the client which
made the IBP_allocate() call, and target must be a write cap returned by a similar call. IBP_copy() is a blocking
call that returns only when all required data is read, the ServerSync expires, or the read operation is prematurely
terminated due to an error.

Return values

Upon success, IBP_copy() returns the number of bytes actually read, otherwise it returns 0 and sets
IBP_errno to one of the following error codes:

• IBP_E _INVALID_PARAMETER: One or more of the parameters to the IBP_copy() call has an

invalid value(e.g.negative size, ...)
• IBP_E_CLIENT_TIMEOUT : A client timeout occurs.
• IBP_E__WRONG_CAP_FORMAT : The IBP capability cap doesn’t have the proper format.
• IBP_E_CAP_NOT_WRITE : The IBP capability source is not a write capability.
• IBP_E_CAP_NOT_READ : The IBP capability target is not a read capability.
• IBP_E_CONNECTION : An error has occurred while trying to connect to the IBP server running on

target host.
• IBP_E_SOCK_WRITE : An error has occurred while trying to write to the socket connection to the

IBP server.
• IBP_E_SOCK_READ : An error has occurred while trying to read response from the IBP server.
• IBP_E_BAD_FORMAT : Response from the IBP server does not have the expected format, or the IBP

server received a badly formatted request.
• IBP_E_INVALID_CMD : The IBP server has received a command it does not recognize.
• IBP_E_CAP_NOT_FOUND : One (or both) storage area accessed through cap does not exist on the

associated IBP server.
• IBP_E_CAP_ACCESS_DENIED : One (or both) storage area accessed through cap can not be

accessed for write operations.
• IBP_E_SIZE_EXCEEDS_LIMIT: The write part of the copy operation would cause the aggregate size

of the storage area to exceed the maximum size specified in the IBP_store() call. This error is only
relevant for storage areas of type IBP_BYTEARRAY.

• IBP_E_FILE_ACCESS: The IBP server has encountered an error while trying to access one or more of
its internal files that control access to the storage area.

• IBP_E_FILE_WRITE : The IBP server has encountered an error while attempting to store incoming
data to the underlying storage area.

• IBP_E_FILE_READ :The IBP server has encountered an error while attempting to read incoming data
to the underlying storage area.

• IBP_E_RSRC_UNAVAIL: A resource used by the IBP server was unavailable to service the request.
This error is only relevant when the underlying storage area has type IBP_FIFO.

• IBP_E_INTERNAL : The IBP server has encountered an internal error while processing the client’s

6 IBP mcopy

Unsigned long int IBP_mcopy (IBP_cap source,
 IBP_cap target[],
 unsigned int nCaps,
 IBP_timer srcTimeout,
 IBP_timer targetTimeout,
 unsigned long int size,
 unsigned long int offset,
 int type[],
 int port[],
 int service)

 IBP_mcopy() copies up to size bytes, starting at offset, from the storage area accessed through the IBP
read capability source, and writes them to the storage area(s) accessed through the IBP write capability(ies)
target[]. The number of target depots is stored in nCaps. For storage areas of type IBP_FIFO and IBP_CIRQ,
offset is ignored. A size value of –1 causes all currently stored data in an IBP_BYTEARRAY type storage area
accessed through source to be copied. For source storage areas of type IBP_FIFO and IBP_CIRQ, a size value of -
1 causes a copy operation for the maximum size specified in IBP_allocate()to be initiated. As in other read
operations to an IBP_FIFO or IBP_CIRQ type storage area, data read from the storage area will no longer be
available for future reads. For this call to succeed, source must be a read cap returned by an earlier call to
IBP_allocate(), or imported from the client which made the IBP_allocate() call and target must be a write cap
returned by a similar call. IBP_mcopy() is a blocking call that returns only when all required data is successfully
copied from the source IBP serverto all the target IBP server, the highest ServerSync value expired or the
operation is prematurely terminated due to an error. At the moment, there are implemented five types of data
movers that can support TCP , UDP and IP Multicast data transfer protocols, the selection of the protocol is
passed through the API using the parameters types[] (at the moment same type should be specified for all the

targets) and service, the first one specifies the data mover type for the target IBP servers, and the second specifies
the type of data mover corresponding in the source IBP server; the dm port[] parameter is used to specify the data
mover option, which at this point are just the ports to be used by the TCP and UDP protocols. It must be specified
and it can be any port number higher than 1024. These types must be defined as follows:

 Targets Source Description
TCP DM_UNI DM_SMULTI

DM_MULTI
DM_PMULTI

Sequential mcopy
Round-robin fashion mcopy
Threaded mcopy

UDP DM_BLAST DM_MBLAST Threaded UDP Based mcopy
MULTICAST DM_MCAST DM_MULTICAST Multicast mcopy

Return values

Upon success, IBP_mcopy() returns the number of bytes read from the source capability, otherwise it returns
0 and sets IBP_errno to the same error codes as IBP_copy.

7 IBP manage

int IBP_manage (IBP_cap cap,
 IBP_timer timeout,

 int cmd,
 int type,
 IBP_CapStatus info);

IBP_manage() allows an IBP client to perform certain management operations on an IBP storage area. Any
client that can present the management capability can issue any of the management commands described below.
Cap is an IBP management capability that is returned in the IBP_allocate() call or imported from the client which
made that call(except when cmd = IBP_PROBE, where any capability can be used). cmd can take one of the
following values (defined in the file ”ibp_protocol.h”):

• IBP_INCR increments the reference count to the capability associated with the management capability

cap, and whose type is specified in the parameter type. The parameter info is ignored for this command.
• IBP_DECR decrements the reference count to the capability associated with the management capability

cap and whose type is specified in the parameter type. Decrementing the reference count the read
capability associated with a storage area to 0 causes the IBP server to delete that storage area from its
managed pool. Further requests to that area will fail, while requests currently in progress will be allowed
to progress to completion. The parameter info is ignored for this command.

• IBP_CHNG changes one or more of the attributes of the storage area accessed through the management
capability cap. The new values are specified through the parameter info (described below). The current
version of IBP allows changes to one (or more) of the following attributes:

– maxSize changes the maximum storage size of the underlying storage area. Changing the size of a

storage area of type IBP_FIFO or IBP_CIRQ is currently not allowed. Decreasing maximum size of a
storage area of type IBP_BYTEARRAY does not affect data already stored there, it will only affect
future requests to that storage area.

– duration changes the duration property of the storage area (see description of the
IBP_allocate() call for further details on the possible values and implications for
this parameter.)

• IBP_PROBE checks the current state of the storage area accessed through the management capability

cap. The current state is returned through the parameter info, which is defined below.

type determines the type of the capability affected by the two commands IBP_INCR and IBP_DECR. It can
have one of two values, IBP_READCAP and IBP_WRITECAP. It is ignored for the two commands
IBP_CHNG and IBP_PROBE.

info is a pointer to a structure of type IBP_CapStatus.

The following table summarizes the use of different parameters with every command.

 type readRefCount writeRefCount currentSize maxSize attrib

IBP_INCR In Not used Not Used Not Used Not Used Not Used
IBP_DECR In Not used Not Used Not Used Not Used Not Used

IBP_PROBE Not Used Out Out Out Out Out
IBP_CHNG Not Used Not Used Not Used Not Used In In

Return values

 Upon success, IBP_manage() returns 0, otherwise it returns -1 and sets IBP_errno to one of the following
errorcodes:

• IBP_E_INVALID_PARAMETER : One or more of the parameters to the IBP_manage() call has an
invalid value (e.g. negative type, ...)

• IBP_E_CLIENT_TIMEOUT : A client timeout occurs.
• IBP_E_WRONG_CAP_FORMAT : The IBP capability doesn’t have the proper format.
• IBP_E_CAP_NOT_MANAGE : The IBP capability is not a write capability.
• IBP_E_CONNECTION : An error has occurred while trying to connect to the IBP server.
• IBP_E_SOCK_WRITE : An error has occurred while trying to write to the socket connection to the

IBP server.
• IBP_E_SOCK_READ : An error has occurred while trying to read response from the IBP server.
• IBP_E_BAD_FORMAT : Response from the IBP server does not have the expected format, or the IBP

server received a badly formatted request.
• IBP_E_INVALID_CMD : The IBP server has received a command it does not recognize.
• IBP_E_CAP_NOT_FOUND : The storage area accessed through cap does not exist on the associated

IBP server.
• IBP_E_INVALID_MANAGE_CAP: The management cap does not match the management cap

associated with the storage area.
• IBP_E_WOULD_DAMAGE_DATA : Trying to change the size of a storage area of type IBP_ FIFO.
• IBP_E_WOULD_EXCEED_LIMIT: Trying to increase the maximum size of an IBP_BYTEARRAY

type storage area leads exceeding the maximum storage space allocated for its class of storage.
• IBP_E_INTERNAL : The IBP server has encountered an internal error while processing the client’s

request.

8 IBP status

IBP_DptInfo IBP_status (IBP_depot depot,
 int StatusCmd,
 IBP_timer timeout,
 Char *password,
 unsigned long int StableStor,
 unsigned long int VolStor

 long duration);

IBP_status() allows an application to perform a query over a particular IBP depot resource and to modify
some general storage properties. depot is the particular IBP depot the application would like to query. StatusCmd
can have two values

• IBP_ST_INQ queries the IBP depot resource for its stable storage and the used amount, its volatile
storage and the used amount, and the duration. When this command is used, the following 4 parameters
are not used.

• IBP_ST_CHANGE changes the stable amount, the volatile amount and duration property of the IBP
depot resource. Note the difference between this command and the IBP_manage() one. It is not possible
to destroy the data already present in an IBP depot, so the changes only take effect if they are equal or
bigger than the currently allocated area.

password is the IBP depot password. StableStor is the new total Stable Storage of the IBP depot. It must be equal
or bigger than the current Stable Storage used; otherwise, it’s ignored. VolStor is the new total Volatile Storage of
the IBP depot. It must be equal or bigger than the current Volatile Storage used; otherwise, it’s ignored. duration
is the new maximum duration allowed. It is not retro-active.

Return values

 Upon success, IBP_status () returns an IBP_DptInfo object, otherwise it returns a NULL and sets IBP_errno
to one of the following error codes:

• IBP_E_CONNECTION : An error has occurred while trying to connect to the IBP server.
• IBP_E_CLIENT_TIMEOUT : A client timeout occurs.
• IBP_E_SOCK_WRITE : An error has occurred while trying to write to the socket connection to the

IBP server.
• IBP_E_SOCK_READ : An error has occurred while trying to read response from the IBP server.
• IBP_E_INVALID_CMD : The IBP server has received a command it does not recognize.
• IBP_E_WOULD_DAMAGE_DATA : Trying to change the size of a storage area of type IBP_ FIFO.
• IBP_E_WOULD_EXCEED_LIMIT: Trying to increase the maximum size of an IBP_BYTEARRAY

type storage area leads exceeding the maximum storage space allocated for its class of storage.
• IBP_E_INTERNAL : The IBP server has encountered an internal error while processing the client’s

request.

