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ABSTRACT  
The three fundamental resources underlying Information 
Technology are bandwidth, storage, and computation.  The goal 
of wide area infrastructure is to provision these resources to 
enable applications within a community.  The end-to-end 
principles provide a scalable approach to the architecture of the 
shared services on which these applications depend.  As a prime 
example, IP and the Internet resulted from the application of these 
principles to bandwidth resources.  A similar application to 
storage resources produced the Internet Backplane Protocol and 
Logistical Networking, which implements a scalable approach to 
wide area network storage. In this paper, we discuss the use of 
this paradigm for the design of a scalable service for wide area 
computation, or programmable networking.  While it has usually 
been assumed that providing computational services in the 
network will violate the end-to-end principles, we show that this 
assumption does not hold.  We illustrate the point by describing 
Logistical Network Computing, an extension to Logistical 
Networking that supports limited computation at intermediate 
nodes. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design — distributed networks, network 
communications, store and forward networks 

General Terms 
Design 
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1. INTRODUCTION 
The mounting wave of enthusiasm for the idea of building a 

new “cyberinfrastructure” draws much of its inspiration from the 
manifest success of the Internet as a catalyst for collaboration 
within the research community worldwide [1]. Various well-
publicized visions of the technology-rich environments of the 
future — distributed collaboratories, global computing grids, 
ubiquitous computing, pervasive computing, autonomic 
computing — seek to expand and amplify the Internet’s power in 
this regard. But when looked at through the lens of the Internet’s 
success, even a casual review of such visions makes two points 
about such a next generation infrastructure abundantly clear: 
First, it must be more general than the current Internet, delivering 
a much more capable set of services and resources. Second, and 
less well remarked, it must scale at least as well as the current 
Internet does, and better along some dimensions Yet for 
infrastructure builders dealing with information technology in the 
wide area, i.e. for the Networking and Distributed Systems 
communities, this required combination of generality and 
scalability has proved to be extremely elusive. 

On one hand, Networking has traditionally been concerned 
with “data communications,” or the accurate and timely transfer 
of bits from one host system to another.  This limited scope has 
allowed it to apply stringent rules of architectural discipline, 
notably the end-to-end principles [2], to the problem of designing 
systems that can scale. The obvious example is the Internet, 
which has successfully scaled to reach every country on the 
globe, and may soon reach most communities. However, with the 
recent exception of Logistical Networking [3], attempts to 
generalize the network to include storage or compute services, 
such as Active Networking [4], have generally run afoul of the 
end-to-end principles [5] and proved difficult to scale up. 

On the other hand, while the designers of distributed systems 
would like to achieve Internet-levels of scalability, Distributed 
Systems research grew out of work on operating systems, and its 
scope has always been broader. Since its goals require more 
general services, including storage and computation, the design of 
these systems almost never invokes the end-to-end principles. 
Niches that have developed with the goal of enabling new 
functionality in the wide area, such as storage networking and 
“Grids,” routinely treat scalability as a secondary matter, to be 
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As the name suggests, the goal of Logistical Networking is 
to bring data transmission and storage within one framework, 
much as military or industrial logistics treat transportation lines 
and storage depots as coordinate 
elements of one infrastructure. 
Achieving this goal requires a 
form of network storage that is 
globally scalable, meaning that 
the storage systems attached to 
the global data transmission 
network can be accessed and 
utilized from arbitrary endpoints. 
To create a shared infrastructure 
that exposes network storage for 
general use in this way, we set 
out to define a new storage stack 
(Figure 1), analogous to the 
Internet stack, using a bottom-up 
and layered design approach that 
adheres to the end-to-end 
principles. We discuss this design 
model in more detail below, but 
the important thing to note here is 
that the key to attaining 
scalability using this model lies in 
defining the right basic abstraction of the physical resource to be 
shared at a low level of the stack. In the case of storage the 
Internet Backplane Protocol (IBP) plays this role. 

dealt with after new protocols and intermediate nodes have been 
designed and tested. 

Our position is that a successful way to create a scalable, 
programmable network, capable of providing the kind of 
generality that many advanced applications and environments 
will require, is to integrate into the network a compute service 
that adheres to the end-to-end principles.  
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Figure 1: The Network 

Storage Stack 

Given previous experience and prevailing attitudes, the most 
obvious and serious objection to this position is that it advocates 
doing something that cannot be done, but we argue here that it 
can be. Since our proposed approach leverages our previous work 
in the area of Logistical Networking (LoN)[6], we call it 
Logistical Network Computing (LoNC). Since the analysis we 
give here extends the analysis of globally scalable network 
storage that we previously presented at SIGCOMM 2002, 
interested readers are directed to that work [3]. 

2. Building on Logistical Networking 
For several years we have been exploring the hypothesis that 

the Internet design paradigm for scalable resource sharing, which 
is based on the end-to-end principles [2, 5], can be applied more 
generally to both storage and processor resources. Our initial 
focus has been on storage, and under the heading of Logistical 
Networking (LoN), we have used the Internet model to create a 
highly scalable network storage service based on the Internet 
Backplane Protocol (IBP) [7]. Because it can scale globally, IBP 
supports the incorporation of shared, interoperable storage 
elements, called IBP “depots,” into the network, creating a 
communication infrastructure that is enriched with storage which 
is exposed to application developers and end users in an 
unprecedented way.  

IBP is the lowest layer of the storage stack that is globally 
accessible from the network. Its design is modeled on the design 
of IP datagram delivery. Just as IP is a more abstract service 
based on link-layer datagram delivery, so IBP is a more abstract 
service based on blocks of data (on disk, memory, tape or other 
media) that are managed as “byte arrays.” By masking the details 
of the storage at the local level — fixed block size, differing 
failure modes, local addressing schemes — this byte array 
abstraction allows a uniform IBP model to be applied to storage 
resources generally. The use of IP networking to access IBP 
storage resources creates a globally accessible storage service. 

Since computation is inherently more complex than storage 
in various ways, it is natural to assume that LoNC will be 
inherently more challenging than LoN. This is certainly true. Yet 
there are two good reasons to set the stage for the discussion of 
LoNC by briefly reviewing a few main points about LoN, whose 
design and implementation preceded it.   

The first reason is that it is easier to see the outlines of the 
basic idea in the context of network storage than it is in the 
context of network computation. Although the same end-to-end 
paradigm is being applied in both cases, the relative simplicity of 
storage, and its obvious parallels with the case of bandwidth, 
show more clearly how the model can be extended to a new 
resource.  

As the case of IP shows, however, in order to scale globally 
the service guarantees that IBP offers must be weakened, i.e. it 
must present a “best effort” storage service. First and foremost, 
this means that, by default, IBP storage allocations are time 
limited. When the lease on an IBP allocation expires, the storage 
resource can be reused and all data structures associated with it 
can be deleted.  Additionally an IBP allocation can be refused by 
a storage resource in response to over-allocation, much as routers 
can drop packets; such “admission decisions” can be based on 
both size and duration.  Forcing time limits puts transience into 
storage allocation, giving it some of the fluidity of datagram 
delivery; more importantly, it makes network storage far more 
sharable, and easier to scale.  

Second, and more importantly, the work on LoNC builds 
directly on the storage service that LoN supplies, and this 
provides the logistical approach to computation in the network 
with a tremendous advantage that previous efforts in this general 
area did not possess: a scalable, general purpose solution to the 
problem of managing the state of distributed applications. The 
absence of such an infrastructure for interoperable state 
management is well known to present a major impediment to the 
creation of advanced distributed applications that can actually be 
deployed [8]. Since LoN technology provides a generic storage 
service, which is exposed for application scheduling and is 
scalable to the wide area, it lays the foundation for solving this 
problem and thereby opens up opportunities for new lines of 
attack on the problem of scalable network computing. The basic 
outlines of LoN, therefore, are essential context for understanding 
Logistical Network Computing. 

The semantics of IBP storage allocation also assume that an 
IBP storage resource can be transiently unavailable. Since the 
user of remote storage resources depends on so many 
uncontrolled, remote variables, it may be necessary to assume that 
storage can be permanently lost.  Thus, IBP is a “best effort” 
storage service.  To encourage the sharing of idle resources, IBP 
even supports “soft” storage allocation semantics, where allocated 
storage can be revoked at any time. In all cases such weak 
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semantics mean that the level of service must be characterized 
statistically.  

IBP storage resources are managed by “depots,” which are 
servers on which clients perform remote storage operations.  IBP 
client calls fall into three different groups [7]: IBP_allocate 
and IBP_manage for storage management; IBP_store, 
IBP_load, IBP_copy, and IBP_mcopy for data transfer; and 
IBP_status, for depot management.  The IBP_allocate 
function is the most important operation. It is used to allocate a 
byte array at an IBP depot, specifying the size, duration 
(permanent or time limited) and other attributes. A chief design 
feature is the use of capabilities (cryptographically secure 
passwords) [9]. A successful IBP_allocate call returns a set 
of three capabilities for the allocated byte array — one for 
reading, one for writing, and one for management — that may be 
passed from client to client, requiring no registration from or 
notification to the depot 

The other component of the storage stack that is critical to 
the logistical approach to network computation is the exNode 
[10]. Building on end-to-end principles means that storage 
services with strong properties — reliability, fast access, 
unbounded allocation, unbounded duration, etc.—must be created 
in higher layers that aggregate more primitive IBP byte-arrays 
beneath them. To apply the principle of aggregation to exposed 
storage services, however, it is necessary to maintain state that 
represents such an aggregation of storage allocations (e.g. 
distribution or replication across multiple depots), just as 
sequence numbers and timers are maintained to keep track of the 
state of a TCP session.  

Fortunately there is a traditional, well-understood model to 
follow in representing the state of aggregate storage allocations. 
In the Unix file system, the data structure used to implement 
aggregation of underlying disk blocks is the inode (intermediate 
node). Under Unix, a file is implemented as a tree of disk blocks 
with data blocks at the leaves. The intermediate nodes of this tree 
are the inodes, which are themselves stored on disk. 

Following the example of the Unix inode, a single, 
generalized data 
structure called 
an external node, 
or exNode, has 
been 
implemented to 
aggregate byte 
arrays in IBP 
depots to form a 
kind of pseudo-
file (Figure 2). 
We call it a 
pseudo-file 
because it lacks 
features (e.g. a 
name, ownership 
metadata, etc.) 
that a file is 
typically 
expected to have. 
To maximize 
application 

independence and interoperability, exNodes encode their resource 
information (e.g. IBP capabilities, URLs, etc.) and associated 
metadata in XML. 

The exNode provides the basis for a set of generic tools, 
called the Logistical Runtime System (LoRS), for implementing 
files and other storage abstractions. The LoRS tools, which are 
freely available at (http://loci.cs.utk.edu), can be used in a wide 
area testbed of IBP depots (currently +15TB) called the Logistical 
Backbone (L-Bone). Today the L-Bone encompasses more than 
200 public nodes in 19 countries, and this deployment of LoN 
technology provides a rich platform for experimentation on a new 
approach to scalable network computation. 

3. SCALABILITY OF NETWORK 
COMPUTATION 

In designing a scalable network computing service, we 
follow a methodology that is simple, but which reverses the 
typical order of thought in the design of distributed systems. 
Rather than starting with an idea of what level of functionality we 
require of the network, or what sort of intermediate nodes we 
want to build, we start with the requirement that the system scale, 
using adherence to the end-to-end principles as the means by 
which such scalability can be achieved. This demand is stringent 
enough to dictate many important features of the basic service. 

The most important consequence of requiring scalability is 
that the semantics of the service must be simple and weak [5].  If 
the semantics are too complex, it will fail the requirement that 
services implemented at intermediate nodes be generic.  Likewise, 
if the guarantees made by the service are too strong, then it will 
not compose with a scalable communication network, such as the 
Internet, without breaking. This approach was followed in the 
design of IP for wide area communication, or Internetworking, 
and in the design of the Internet Backplane Protocol (IBP) for 
wide area storage services, or Logistical Networking [3].  In this 
section, we will show how a wide area network compute service 
can be created by systematically applying this same approach to 
the basic semantics of network computation. In analyzing 
different dimensions of the service — availability, continuity, 
statefulness, correctness, and security — the way in which 
corresponding aspects of IP and IBP were designed will serve as 
guides. The resulting design parameters will be used to specify a 
computational extension to IBP, thereby defining LoNC. 

Figure 2: The exNode compared to a 
Unix inode. 

3.1 Availability 
The core service of the Internet is best-effort forwarding of 

IP datagrams at an intermediate node.  The best-effort nature of 
the service means that any particular router may be unavailable.  
Internet routing takes advantage of redundancy in the underlying 
topology of the network to find different paths between endpoints 
that avoid the unavailable router.  This strategy is good enough to 
ensure a datagram delivery service between endpoints that is 
acceptably reliable. 

In LoN, the core service is storage of data on, and transfers 
of data between, intermediate nodes that implement IBP.  Like 
datagram service for the Internet, IBP is a best-effort service, so 
users must be prepared for an intermediate node to be unavailable 
for unknown periods of time.  But unlike communicating 
applications, which maintain data state at the endpoint in 
anticipation of a possible loss of connectivity, storage 
applications must rely on redundancy across multiple 
intermediate nodes to overcome outages.  As a result, although 
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applications cannot rely on predictable locality in their access to 
storage, the service seen by end-users is acceptably reliable. 

In the case of LoNC, the core service will be the 
transformation of stored state.  As with IP and IBP, a best-effort 
computational service has to allow for the unavailability of an 
intermediate node that performs computation.  In order for the 
service to proceed when a particular node becomes unavailable, 
redundant resources must be used to perform the computation on 
some other node.  This means that the data on which the 
computation acts must be accessible even in the presence of 
failures in nodes that may both store and compute; such state-
management strategies fall into the domain of LoN.  Although the 
need to find alternate compute nodes and retrieve stored data from 
remote sources means that applications cannot rely on predictable 
locality in their access to computation, the service seen by end-
users will be acceptably reliable. 

In a scalable Wide Area Network (WAN), computing 
resources can be intermittently unavailable (or available only with 
inadequate quality of service) due to a number of conditions in 
the network, including traffic congestion, routing problems, 
topology changes and malicious interference.  These conditions 
are resolved in time frames ranging from less than a second to 
longer than days.  In the face of such problems, a variety of 
familiar end-to-end strategies should exist for ensuring 
availability.  These range from simple retry, to redundant 
computations spread across the network, to maintaining high-
latency, high-reliability systems.  Obviously, these approaches 
must be implemented at the end-points, both in order to ensure 
delivery to the end-point and to achieve the necessary level of 
sensitivity to the requirements of the end-point operating systems, 
applications and users.   

3.2 Fragmentation 
The basic difference between circuit switching and packet 

networking is the unit of service: once a circuit is set up, the 
amount of data that can flow through it is in principle unbounded, 
whereas every intermediate node in a packet network has a 
maximum transmission unit (MTU).  End-to-end services such as 
TCP streams that are unbounded in their handling of data are 
implemented by aggregating the underlying datagrams, which 
themselves may be implemented by aggregating underlying 
packets. 

As applied to LoN, restricting the basic unit of service means 
that both the size and the duration of storage allocation have 
limits that are imposed by the storage intermediate node or depot.  
Limiting the size of allocations means that a large data object may 
have to be spread across multiple depots.  This type of 
fragmentation based on size limitations is well known in all 
storage systems; but fragmentation due to temporal restrictions is 
not.  Limiting the duration of a storage allocation means that 
every allocation is a lease, and while it may be renewable, this is 
subject to availability of resources and not guaranteed.  In the 
face of an expiring allocation that cannot be renewed, an endpoint 
must be prepared to transfer the data to another depot or to lose it.  
This is a highly unusual attribute for a storage service, and is one 
of the key points separating LoN as a scalable service from other 
storage services. 

When applied to computation, fragmentation of service 
implies that the size and duration of a computational service have 
limits that are imposed by the computational intermediate node. 
(As we explain below, in LoNC, this intermediate node is a 

modified IBP depot.)  The limit on size means that the local state 
that any one computational service transforms has a limit. Such 
limits on process size exist in all operating systems.  But as with 
storage, the limit on duration of a computation is less intuitive, 
although it has historical roots. 

Fragmenting a computation means that any particular request 
for service has a fixed upper bound on the computational 
resources that it can consume.  As with storage, this request may 
be renewable, but the endpoint must be prepared for the case in 
which it is not renewed due to resource oversubscription.  When a 
computational fragment is done, the data it has just transformed 
will, in general, still be available.  Continuing the computation 
means making a new service request on that or another 
computational intermediate node. 

However, in all these cases — bandwidth, storage, and 
computation — the reason for limiting the maximum unit of 
service, and thereby causing fragmentation, is that otherwise it is 
much more difficult to share the resources of the intermediate 
node, and hence much more difficult to make the service scale up.  
The resources consumed by a circuit, a permanent storage 
allocation or an unbounded computational process can be high 
enough that it is not possible to provision a network to meet 
community needs without per-use billing.  Weakening the service 
by imposing fragmentation means that sharing is enhanced at the 
expense of deterministic service guarantees. 

But such weakened semantics are no more a part of the 
traditional model of computation than they were a part of the 
traditional model of storage. Conventional computational services 
either execute jobs to completion or perform remote procedure 
calls that transform inputs to outputs.  Accepting fragmentation of 
service in LoNC means that we must view our computational 
service as transforming stored state within the intermediate node, 
perhaps completing only a part of the “job” or “call” ultimately 
intended by the end user.  To complete the kind of unbounded 
computations that some applications require, multiple 
computational fragments will have to be applied, either using a 
single computational intermediate node or using many, with 
attendant movement of state for the purposes of fault tolerance 
and possibly parallelism. 

An obvious objection to this kind of fragmentation of 
execution is that it requires active management of the 
computation by the end-point.  It is commonly viewed as a 
positive aspect of execution to completion that the endpoint need 
not participate actively in the progress of the computation, and 
can in fact focus its own resources elsewhere until the result of 
the remote computation is required.  

3.3 Statelessness 
In using the best-effort services of routers to construct 

stronger services end-to-end, Internet endpoints rely partly on the 
fact that intermediate nodes are stateless, so that the construction 
of an alternate route affects only performance characteristics seen 
at the end-points.  Of course storage service cannot be stateless, 
yet a similar philosophy was followed in the design of IBP for 
LoN. The only state a depot maintains is the state required in 
order to implement its basic services, which are allocation of 
storage, writing and reading. It maintains no additional state 
visible to the endpoint.  The intent is to allow depots to appear 
interchangeable to the endpoint, except for the data that they 
actually store.  Thus, although endpoints do carry the burden of 
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keeping track of data stored at depots, they bear no additional 
burden of managing other visible state. 

Like storage, computation (defined as transformation of 
stored state) can only be performed at an intermediate node that 
can maintain persistent state.  This is the reason that computation 
is a natural extension of the IBP depot, and LoNC is a natural 
extension of LoN.  However, following the philosophy of 
minimizing control state, the computational services implemented 
at the depot must not maintain any visible state other than that 
which they transform.   

From a practical point of view, this means that there should 
be no state maintained in the operating system or other portions of 
the computational intermediate node that is required for the 
correct invocation of computational services.  If a computational 
service were to change the state of the system in some way, for 
instance by writing data to a local temporary file, then the 
existence of that temporary file must not be required in order for 
any future computation to proceed.  If file system state must be 
maintained between computational services, then it has to be 
modeled as an explicit part of the stored state transformed by the 
service, stored by IBP and managed by an endpoint. 

Using explicit storage to maintain temporary state in a chain 
of computations is a burden on the endpoint, but it is not hard to 
understand or to incorporate into a runtime system.  Another 
limitation imposed by statelessness is that network connections 
cannot be explicitly maintained between invocations of 
computational services.  There are two approaches to dealing with 
this: either use a connectionless mode of communication, such as 
writing into and reading from a tuple space [11]; or else put the 
burden of communication on the endpoint, requiring it to use LoN 
services to implement the transfer of state between intermediate 
nodes.  Thus, the choice is either to maintain no visible state or to 
make the state explicit and allow it to be managed by the 
endpoint. 

3.4 Correctness 
The use of untrusted intermediate nodes improves 

scalability, but it requires that the work they do be checked at the 
endpoint to establish correctness.  In the cases of data 
transmission and storage, the receiver has no way to check with 
certainty that the data received was in fact the same as that sent; 
but if redundancy is added in the form of checksums, then the 
receiver can make a probabilistic check that the data received is 
internally consistent.  This does not provide protection against 
malicious intermediate nodes, which can send data that is 
incorrect but internally consistent. It does, however, guard against 
errors. 

 One might think that settling for non-scalable network 
computation would make life easier because it allows 
computational nodes to be authenticated, and such authentication 
may be deemed sufficient to establish trust.  But in a wide area 
computing infrastructure, a trusted but faulty or malicious node 
can cause unbounded damage.  This is the result of ignoring the 
end-to-end principles. 

The equivalent of checksums for computation is for an 
operation to return enough information for the result to be 
verified, at least probabilistically.  A simplified example is the 
Greatest Common Divisor (GCD) operation: if it returns all of the 
prime factors of both operands, then the GCD it returns can be 
verified trivially.  However, if only the GCD is returned, the cost 
of verifying it is the same as the cost of performing the operation 

locally.  The redundancy in the results of the operation provides a 
check on correctness, at essentially no additional cost; and 
because it is deterministic rather than probabilistic, it does guard 
against malicious intermediate nodes. 

Clearly, arbitrary operations cannot be checked in this way, 
and adding redundancy to complex operations may be very 
difficult or awkward.  However, part of the research program 
associated with LoNC is to develop sets of operations, or “bases,” 
for useful classes of network computation that are verifiable.  
These classes may be limited, but because their implementation 
will follow the end-to-end principles, they will not have the 
vulnerability to faulty computational nodes of current network 
computing systems based on trust. 

3.5 Security 
Untrusted intermediate nodes may steal or corrupt the data 

they handle.  End-to-end security is implemented through 
encryption: encrypted data cannot be read or be forged without 
possessing the appropriate key.  As in the discussion of 
correctness above, this works quite well in the cases of data 
transmission and storage because encryption commutes with both 
of these operations (moving and storing data).  However, 
conventional encryption algorithms do not commute with 
arbitrary computations, and so in current computational systems, 
it is necessary to decrypt at the compute server, establishing 
security only between the client and that server.  Again, there is 
no end-to-end security; the usual approach is to authenticate the 
server and rely on trust, with the same vulnerability. 

An end-to-end approach to security in network computation 
would require that we use encryption that commutes with the 
operations implemented on the intermediate node.  While it is 
hard to see how current strong encryption algorithms could 
commute with arbitrary computation, it is possible to conceive of 
weaker encryption (perhaps obscuring is a better word) that might 
commute with specific operations.  A very simple example would 
be this: if the operation were a bitwise logical operation, like 
XOR, applied to large blocks of data, then permutation of the data 
would serve to obscure it, but the inverse permutation is simple to 
apply. 

It is easy to see the limitations of this approach, and as with 
correctness, finding useful sets of operations that can be made 
secure in an end-to-end way is part of the LoNC research 
program.  The thing to see is that this is the only approach that 
provides end-to-end guarantees for network computing.  It can be 
combined with approaches based on authentication and trust for 
the sake of generality (i.e. trust but verify), however the 
difference in strength of the guarantees provided by the two 
approaches must be well understood.  Any approach that is not 
end-to-end is vulnerable to betrayal by a trusted intermediate 
node. 

4.  THE NFU AND THE EXNODE 
4.1 A Generic Network Computing Service  

Before exploring the question of how to build a 
programmable network on the foundation of the kind of weak 
computational service which, as we have just seen, conformity to 
the end-to-end principles requires, it is important to clarify our 
use of the term “programmable networking.” In the context of 
Active Networking, “programmable networking” means 
executing computational processes on IP routers and maintaining 
process state there in the processing of large flows, or even across 
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multiple flows. For LoNC, on the other hand, programmable 
networking means adding primitive state transformation 
operations to a LoN infrastructure that already supports flexible 
management of persistent state, and then exposing both storage 
and computational resources for general use according to the end-
to-end paradigm. As already noted, according to the end-to-end 
principles the key to achieving scalability lies in defining the right 
basic abstraction of the physical resource to be shared at the 
lowest network accessible level of the stack. For LoN the Internet 
Backplane Protocol (IBP) provides an abstraction of storage that 
plays this role. LoNC merely extends IBP to encompass a 
separate abstraction of processor resources. 

To add processing power to the depots in a logistical 
network using this approach, LoNC must supply an abstraction of 
execution layer resources (i.e. time-sliced operating system 
execution services at the local level) that satisfies the twin goals 
of providing a generic but sharable computing service, while at 
the same time leaving that service as exposed as possible to serve 
the broadest range of purposes of application developers [5]. The 
execution layer, which is our term for computational service at 
the local level, lies below IBP in the stack shown in figure 1, at 
the same level as the local storage access layer. Following the 
familiar pattern, all stronger functions would then be built up in 
layers on top of this primitive abstraction.  

 Achieving these goals requires that the abstraction mask 
enough of the particularities of the execution layer resources, (e.g. 
fixed time slice, differing failure modes, local architecture and 
operating system) to enable lightweight allocations of those 
resources to be made by any participant in the network. The 
strategy for implementing this requirement is to mirror the IP 
paradigm. This strategy has already been used once in creating a 
primitive abstraction of storage in IBP to serve as a foundation for 
Logistical Networking [3]. That case showed how the generic 
service could be made independent of the particular attributes of 
the various underlying link or access layer services by addressing 
the three key features: resource aggregation, fault detection, and 
global addressing. Table 1 shows the results. 

The abstractions of IP datagram service and IBP byte array 
service allow uniform models to be applied globally to network 
and storage resources respectively. In the case of IP, this means 
that any participant in a routed IP network can make use of any 
link layer connection in the network regardless of who owns it; 
routers aggregate individual link layer connections to create a 

global communication service.  IP-based aggregation of locally 
provisioned, link layer resources for the common purpose of 
universal connectivity constitutes the form of sharing that has 
made the Internet the foundation for a global information 
infrastructure.  A parallel analysis applies in detail to IBP and the 
different underlying access layers of the network storage stack. 

We call the new abstraction of computational resources at 
the execution layer the Network Functional Unit (NFU), and 
implement it as an orthogonal extension to the functionality of 
IBP. The name “Network Functional Unit” was chosen to fit the 
pattern established by other components of the LoN 
infrastructure, which expresses an underlying vision of the 
network as a computing platform with exposed resources that is 
externally scheduled by endpoints.  The archetype here is a more 
conventional computing network: the system bus of a single 
computer (historically implemented as a backplane bus), which 
provides a uniform fabric for storing and moving data.  This was 
the analysis that was invoked in naming the fundamental protocol 
for data transfer and storage the “Internet Backplane Protocol.”  
In extending that analogy to include computation, we looked for 
that component of a computer that has no part in data transfer or 
storage, serving only to transform data placed within its reach.  
The Arithmetic Logic Unit (ALU) seemed a good model, with its 
input and output latches serving as its only interfaces to the larger 
system.  For this reason, we have named the component of an IBP 
depot that transforms data stored at that depot the Network 
Functional Unit. 

 Just as IP is a more abstract service based on link-layer 
datagram delivery, IBP’s Network Functional Unit is a more 
abstract service based on computational fragments (e.g. OS time 
slices) that are managed as "operations." The independence of 
NFU operations from the attributes of the particular execution 
layer is established by working through the same features of 
resource aggregation, fault detection, and global addressing.  
Table 1 displays the results for the NFU side by side with the 
previous cases. 

This higher level “operation” abstraction allows a uniform 

NFU model to be applied to computation resources globally, 
which is essential to creating the most important difference 
between execution layer computation slices and NFU operation 
service: Any participant in a logistical computation network can 
make use of any execution layer storage resource in the network 

Table 1: Generic service abstractions for data transmission (IP), data storage (IBP), and computation (NFU). 

 IP (Bandwidth) IBP (Storage) NFU (Computation) 

Resource 
Aggregation 

Aggregation of link layer packets 
masks its limits on packet size 

Aggregation of access layer blocks 
masks the fixed block size 

Aggregation of execution layer time 
slices masks the fixed slice size 

Fault  
Detection 

Fault detection with a single, simple 
failure model (faulty datagrams are 
dropped) masks the variety of 
different failure modes 

Fault detection with a simple failure 
model (faulty byte arrays are 
discarded) masks the variety of 
different failure modes 

Fault detection with a simple failure 
model (faulty operations terminate 
with unknown state for write-
accessible storage) masks the variety 
of different failure modes 

Global  
Addressing 

Global addressing masks the 
differences between LAN 
addressing schemes and masks its 
reconfiguration. 

Global addressing based on global 
IP addresses masks the difference 
between access layer addressing 
schemes. 

Global depot and operation naming, 
based on global IP addresses and a 
uniform operation namespace, 
masks the difference between 
execution layer platforms 



To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),  
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany. 

regardless of who owns it. The use of IP networking to access 
NFU computational resources creates a global computing service. 

Whatever the strengths of this application of the paradigm, 
however, it leads directly to two problems. First, the chronic 
vulnerability of IP networks and LoN to Denial of Service (DoS) 
attacks, on bandwidth and storage resources respectively, applies 
equally to the NFU’s computational resources. The second 
problem is that the classic definition of a time slice execution 
service is based on execution on a local processor, so it includes 
strong semantics that, as we have already shown, are difficult to 
implement in the wide area network. 

Following that line of analysis, and the model of IBP, we 
address both of these issues by weakening the semantics of 
compute resource allocation in the NFU. Most importantly, NFU 
allocations are by default time limited, and the time limits 
established by local depot policy makes the compute allocations 
that occur on them transient. But all the semantics of NFU 
operations are weaker in ways that model computation accessed 
over the network. Moreover, to encourage the sharing of idle 
resources, the NFU supports "soft" operations that use only idle 
cycles, as in Condor [12] and peer-to-peer systems [13]. In all 
cases the weak semantics mean that the level of service must be 
characterized statistically. 

As illustrated in Figure 3, we can identify a logical 
progression of functionality in intermediate nodes: the router 
forwards datagrams, exercising control over the spatial dimension 
by choosing between output buffers.  The depot adds control over 
the temporal dimension by enabling the storage of data in an IBP 
allocation as it passes through.  Finally, the NFU is implemented 
as a module, added to an IBP storage depot, that transforms stored 
data.  If we consider spatial direction, time and value to be 
coordinates of a single space, then the state of any data item is a 

point in this vector space, and the progression is one of increasing 
simultaneous control over multiple dimensions.1 

Since a depot may model either disk or RAM storage 
resources, some NFU operations may apply only to data stored in 
RAM, while others may also apply to data stored on disk. 

Restricting an operation to data held in RAM forces any 
necessary movement between disk and RAM to be explicitly 
directed by the end-point using IBP, just as in data movement 
between depots.  The NFU implements a single additional 
operation, NFU_op: 

NFU_op(depot, port, operation, soft, 
                   cap_1,... cap_n) 
In this simplified form the NFU_op call is used to invoke an 

operation at the IBP depot, specified by the IP address and port it 
binds to.  The operation is specified as an integer argument, 
whose meaning is set by a global registry of operation numbers.  
The arguments to an operation consist of a list of capabilities 
(cryptographically secure names) for storage allocations on the 
same depot where the operation is being performed.  Thus, there 
is no implicit network communication performed by a given 
depot in responding to an NFU_op call. A flag indicates whether 
the operation is soft (using only idle cycles). The capabilities 
specified in this call can enable reading or writing, and the 
limitations of each are reflected in the allowed use of the 
underlying storage as input or output parameters.  The number 
and type of each capability are part of the signature of the 
operation, specified at the time the operation number is registered.  
Any violation of this type information (for instance, passing a 
read capability for an output parameter) may cause a runtime 
error, but it is not checked by the implementation of NFU_op at 
the client side.  Such effects as aliasing between capabilities are 
also not detected.   

There are a number of important and obvious refinements to 
this call, such as handling scalar arguments and storage 
capabilities differently, that give it more structure and can, in 
some instances, make correct use and efficiency more likely. An 

important difference between NFU_op and a remote procedure 
call mechanism is that since the data items are assumed to be 
already stored in capabilities (i.e. they are already “marshaled”), 
all issues of data representation and type are pushed onto the 
operations themselves, rather than being part of the NFU_op call. 

 

 

 

Figure 3: Intermediate nodes to manage bandwidth (IP router), storage (IBP Depot), and computation (NFU-enabled Depot) 

The behavior of the IBP depot in response to an NFU_op 
call is to map the specified capabilities into an address space, look 
up the operation in a library of dynamically invoked calls, and 
execute it.  The set of calls implemented at each depot is 
determined by local policy.  Because the storage allocations are 

                                                                 
1 This unified point of view was nicely expressed by Dan Hillis in 

his 1982 paper “Why Computer Science is No Good,” when he 
remarked that “…memory locations…are just wires turned 
sideways in time.”[14]  
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local to the depot, simple memory mapping operations can be 
used, obviating the need for any explicit file access when 
invoking an operation.  This limits the implementation of 
NFU_op to depots implemented in RAM or running on operating 
systems that can map files directly to a process address space. 
The fragmented nature of the operation can be enforced in two 
ways: by refusing to add to the library any call that does not 
provide a strict limit on resource use, and/or by monitoring 
resource use and terminating execution when the limit is reached.  
There may be operations which are of variable duration, and for 
which it makes sense for the user to request a long vs. a short 
execution, as is the case in IBP storage allocations, but we have 
chosen to ignore this complication here. 

4.2 A Data Structure for the Flexible 
Aggregation of Network Computation  

From the point of view of the Distributed Computing 
community, it is likely that one of the most striking features of the 
LoNC stack is the way it appears to simply jettison the well 
known methods of usage for computation, viz. processes invoked 
to run programs or execute procedure calls to completion. These 
familiar abstractions can be supported in the logistical paradigm, 
but that support must conform to its “exposed-resource” design 
philosophy embodied in the end-to-end principles. According to 
these principles, implementing abstractions with strong properties 
— reliability, fast access, unbounded size, unbounded duration, 
etc.— involves creating a construct at a higher layer that 
aggregates more primitive NFU operations below it, where these 
operations and the state they transform are often distributed at 
multiple locations. For example, when data is stored redundantly 
using a RAID-like encoding, it is fragmented and striped across 
depots and parity blocks are computed and stored also.  All of the 
storage allocation and metadata representing its structure is stored 
in an exNode.  In the event that data is lost, the exNode is 
consulted and data movement and XOR operations are issued to 
reconstruct it. 

As with IBP, however, to apply the principle of aggregation 
to exposed computations, it is necessary to maintain control state 
that represents such an aggregation, just as sequence numbers 
and timers are maintained to keep track of the state of a TCP 
session. In the case of logistical storage allocations, we followed 
the traditional, well-understood model of the Unix file system’s 
inode, the data structure used to implement aggregation disk 
blocks to create files, in designing a data structure called the 
exNode to manage aggregate IBP allocations [3].  Rather than 
aggregating blocks on a single disk volume, the exNode 
aggregates byte arrays in IBP depots to form something like a 
file. The exNode supports the creation of storage abstractions 
with stronger properties, such as a network file, which can be 
layered over IBP-based storage in a way that is completely 
consistent with the exposed resource approach. 

The case of aggregating NFU operations to implement a 
complete computation is similar because, like a file, a process has 
a data extent the must be built up out of constituent storage 
resources. In a uniprocessor file system like Unix, the data 
structure used to implement such aggregation is the process 
control block, which includes both a memory map component for 
RAM resources and a swap map component for disk resources.  
In fact, process extents and files are very closely related, as can 
be seen by the existence of system calls like mmap that identify 

the storage extent of a file with part of the data extent of a process 
[10]. 

Exposing the 
primitive nature of 
RAM and disk as 
storage resources has 
the simplifying effect of 
unifying the data extent 
of a file with the data 
extent of a process; 
both can be described 
by the exNode (Fig. 4).  
But each must be 
augmented with 
additional state to 
implement either a full-
fledged network file or 
a full-fledged network 
process.  Thus, the 
closely related services 
of file caching, backup, 
and replication, on the 
one hand, and process 
paging, checkpoint, and 
migration, on the other, 
can be unified in a single set of state management tools. 

 
Figure 4: The exNode provides a 
uniform view of data and process 

state in LoNC 

4.3 Pipelining for NFU performance 
At this point, the reader may wonder how we propose to 

obtain any degree of performance out of such a fragmented 
service, a service where each time slice must be individually 
allocated, and where data movement and control must reside at a 
possibly distant network end-system.  In truth, this is one more 
component of our research program, but one that we believe we 
have powerful tools to address.  In this section, we briefly sketch 
the analogy we see between the execution of NFU operations in 
the wide area and the execution of a stored program on a 
pipelined RISC processor architecture. 

Any computation or service can be characterized as taking 
an initial state S0 and applying a series of primitive 
transformations t0, t1,…  tn, generating a sequence of intermediate 
states Si = ti(Si-1) and a final state Sn.  When the computation 
takes place on a network intermediate node, such as an NFU-
enabled depot, there is an issue of how that sequence of primitive 
transformations is to be organized and effectively invoked. 

One approach is to associate a local generator for the entire 
sequence of operations with a “service” and invoke that service 
using a single name ti = G(Si).  A benefit of this strategy is that 
the sequence of transformations can be generated with no latency 
and applied directly to the state stored on the intermediate node.  
Its weakness is that the intermediate state Si is generally bound to 
the intermediate node, due to non-portable encoding and storage 
of data and transformations.  Also, by implementing the generator 
at the intermediate node the set of available services is defined by 
what the operator of that node is willing to load. 

Another approach is to invoke the sequence of 
transformations explicitly, making each primitive operation an 
individual “service.”  In this model, the generator must be used 
remotely to determine the next transformation to apply.  The 
advantage of this strategy is that it is easier to define the primitive 
transformations in a portable way, at least for certain classes of 
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transformations.  By moving the generator to the edge, the 
particular services that can be built out of those transformations 
are not dependent on the operator of the intermediate node, within 
certain bounds on the utilization of node resources.  The 
disadvantage of this approach comes from the latency in the 
application of the generator and the issuing of primitive 
transformations, as well as from the overhead of issuing a 
network operation for every primitive operation. 

The form of the problem being confronted here is the same 
as that of a well-known problem in the history of computer 
architecture: how to generate and issue a stream of micro-
operations to drive a RISC processor.  In that case, two important 
features were used to address issues of latency and overhead for 
streams of fine-grained operations: pipelining and caching. 
� A standard approach to overcoming the latency of issuing 

instructions is to pipeline them: later instructions are sent 
before responses have been received from earlier 
instructions. 

� When the generation function G is highly regular, it is 
possible to store a portion of it locally on the intermediate 
node and then to substitute local generation for remote 
generation in some cases.  With caching, this is done 
automatically by introducing two modifications to the 
scheme: 
o The entire generation function is modeled as a stored 

program and program counter. 
o Control is reversed, with the remote generator being 

invoked explicitly by the intermediate node (the 
FETCH operation). 

Thus, by using pipelining, and perhaps even a stored program 
model with caching, we believe that the performance gained 
through uninterrupted operation of a stand-alone process 
executing at the intermediate node can be granted to the NFU 
when it conforms to the requirements of the end-system. But the 
end system would never relinquish the discretion to limit such 
independence and exert application-specific control. 

4.4 NFU Scenarios 
Creating a generic network computing service that conforms 

to end-to-end principles would be a mere curiosity unless there 
were real applications that could make use of it. Although we feel 
that various compelling applications for the NFU can be found in 
areas such as multimedia content distribution, digital libraries, 
distributed database design, and Grid services for scientific 
computing, we here discuss only a few relatively simple 
examples.  
4.4.1 Filtering a stream of frames 

An active service that can be easily implemented using the 
NFU is a filter that applies a test to every frame in a stream of 
frames and discards those that fail.  This example is stateless, 
involving only the remote application of the test through a call to 
the NFU and action on the result. 

But such a simple operation can be progressively elaborated. 
A more complex version eliminates duplicate frames by always 
storing the previous frame in a persistent buffer. The per-frame 
test compares the value of the stored frame to the current frame.  
Whenever the current frame differs from the previous frame, it 
becomes the new stored frame and the old value of the stored 
fame is discarded. 

A still more complex version stores the initial frame and 
compresses the stream by sending only a difference function 
computed between the stored frame and the current frame.  The 
stored frame is used until a difference is encountered that is larger 
than some fixed threshold.  At that point, the entire current frame 
is sent and it becomes the new stored frame.  

In all cases, a controlling program at a network endpoint is 
responsible for moving the stream of frames through the depot 
and invoking the NFU operations that apply the test and, in the 
last case, compute the difference function.  A persistent 
controlling state of the network process exists at the edge, 
represented by an exNode and controlled by a conventional 
process. 

A measure of fault tolerance can be achieved in this scenario 
by writing the stored frame redundantly to multiple depots 
whenever it changes.  Furthermore, by maintaining a copy of 
frames sent to the filtering depot at the sender until they have 
been filtered and forwarded, failure at the depot can be recovered 
through recovery of state and restarting any NFU operations 
whose result state has been lost.  The type of redundant state 
management and the resulting degree of fault tolerance are the 
responsibility of, and are under the control of, the endpoint 
program. 
4.4.2 Merging streams of records 

 Consider several streams of records being produced by 
multiple senders and merged, in order, at intermediate nodes 
according to some record comparison operation.  In this case, a 
conventional approach would be to locate a merge process at each 
intermediate node and have the nodes communicate to implement 
the flow control necessary to keep their queues from overflowing.  
Sessions between intermediate nodes that are so established have 
state that is stored at the nodes and is not externally visible. 

One of the key problems in conventional treatments of this 
kind of application is that the end user has to establish the 
authority to start the necessary merge process at each operation.  
Given that the process encapsulates not only the notion of 
comparison required to implement the merge, but also the policies 
for flow control, it is likely to be application-specific rather than 
generic.  This means that it must be expressed as a program that 
executes at the intermediate node. But if the problem of 
establishing the trust necessary for such execution can be 
overcome, the merge can be implemented.   

However, an issue immediately arises concerning reliability: 
if any intermediate node fails, the data and session state that were 
located at that node, or in transit to or from it, at the time of 
failure will be lost.  What is required is a more complex scheme 
for managing intermediate state. Enough redundancy must be 
maintained in the stored state of the merge tree to recover from a 
node failure, and the control state required to make use of that 
stored state must be accessible outside of any one node. This issue 
can be addressed in the design of a merge process that is 
implemented at each intermediate node, but it becomes a difficult 
problem in distributed control.  LoNC, however, offers a clear 
alternative. 

In order to implement the merge using LoNC, it is only 
necessary to have the basic comparison and merge operations 
available through the NFU.  Because these are such generic 
operations, there is a good chance that they can be implemented 
in forms that would be reusable across broad classes of 
applications and so could be installed semi-statically.  The 
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strategy of exposing general (if not completely generic) 
operations relies on the assumption that this would allow 
substantial sharing of operations without the need for application-
specific trusted code.   

An endpoint that implemented the merge using NFU 
operations for comparison and merging would manage the entire 
state of the merge tree as it flowed from sources to sink.  Every 
buffer full of data would reside in an IBP allocation, as would any 
intermediate state that might be maintained and communicated 
between merge operations.  Use of disk as well as RAM resources 
to buffer larger amounts of data when required to adjust for 
differences in flow, and the algorithms used to prefetch data back 
to RAM in anticipation of its being used in an operation, would 
be under the control of the endpoint, as would all replication of 
data and control state required to support fault tolerance.  
4.4.3 Edge services 

The simplest model of Web and streaming media is to 
deliver the same service to clients anywhere in the network from 
a centralized server or a set of replicas.  A slightly more complex 
model has a centralized server deliver a generic service to an edge 
device, or “middlebox,” that then reprocesses it to create the 
ultimate end-user service.  Examples include the transcoding of 
video streams between formats or bitrates, and the construction of 
personalized Web pages using databases of user-specific 
information.  One problem with the deployability of this 
architecture is that it requires that middleboxes be ubiquitous 
within the network and that the necessary business arrangements 
be made between the operators of servers and the operators of 
middlebox infrastructures. 

When the creation of a standard middlebox framework was 
addressed by the IETF OPES Application Area Working Group, 
the IAB was very concerned about the interposition of an active 
agent between the client and server [15, 16]. The need to maintain 
control and accountability gave rise to many caveats regarding the 
requirement that one of the two endpoints authorize any edge 
service, and the need to alert the client when an edge service is 
applied to the output of the server.  The fundamental problem is 
that the introduction into the system of an agent that is neither the 
client nor the server creates the possibility that both would act in 
the interest of some third party whose services have not been 
explicitly invoked. 

Given that edge services are simple enough to be 
implemented using atomic operations, LoNC makes it possible for 
either the server, or the client, or both, to implement edge services 
using the NFU.  The question of authorization becomes moot, 
since there is no active agent other than the client and the server. 
4.4.4 Distributed data queries 

The Web has given rise to a highly decentralized mode of 
data management in which many individual producers store their 
data locally in a manner that is globally visible.  Then, indexing 
services such as search engines scan the visible data and create 
indices against which later queries are executed.  The creation of 
global indices is a massive job, requiring supercomputer-scale 
processing power and storage capacity.  For this reason, querying 
of global data is only possible through expensive and unwieldy 
infrastructures such as those deployed by Google and other search 
engines, and queries that fall outside of the scope of their indices 
are impossible for the average user or project.  Other examples of 
such global query infrastructures are peer-to-peer [17, 18]. 

An alternative architecture is to allow ad hoc queries to be 
made directly against distributed data, using a massively parallel 
NFU infrastructure that is located on or close to the systems that 
store the data.  In this model, indices can be constructed on the fly 
and maintained for as long as they are useful to a single user or to 
a community.  The level of resources required to build global 
indices is hard to manage only when it is centralized and owned 
by a single project or company.  The scale required to manage 
substantial subcollections of the entire Web will be the size that 
fits easily into a globally provisioned LoNC infrastructure. 

5. CONCLUSION 
In this paper we have shown how Logistical Networking can 

be extended beyond its origin as an end-to-end approach to 
network storage to include network computation. The result 
combines data transfer (bandwidth), data persistence (storage) and 
data transformation (computation) in a uniform model of state 
management that, because it is designed for scalability using the 
end-to-end paradigm, can be applied to many difficult problems 
in wide area computation. Yet the very fact that this approach 
tries to synthesize all these elements in one common scheme has 
led some to question whether or not this work belongs to the field 
of Networking at all, rather than some other field of distributed 
systems. We have two answers to this query, which, taken 
together, help to put these ideas in a wider perspective. 

In the first place, Logistical Networking borrows from the 
fundamental principles of Wide Area Networking, which seems to 
us to be the reason that it has always been best understood by the 
networking community. One way to characterize the field of 
Wide Area Networking is to say that it encompasses the subset of 
distributed systems that is restricted to those that scale globally.  
In other areas of Distributed Systems, such as distributed 
databases or telecollaboration, scalability is a virtue that designers 
strive for, but a system that is less scalable can still hope to fill an 
important niche.  By contrast, in Wide Area Networking 
scalability has been taken as a fundamental requirement for 
architectural acceptability from the outset of the design process. 

Logistical Networking likewise embraces scalability as a 
defining characteristic.  We seek to broaden the interpretation of 
the end-to-end principles, which we view as necessary guides to 
achieving scalability, to services other than the undelayed and 
unmodified delivery of bits.  By putting those principles first, we 
have derived a design for ubiquitous infrastructure that has the 
familiar limitations of weak semantics, but which includes storage 
and computation and, arguably, will scale. 

In the second place, Logistical Networking seeks to create a 
unified framework by exploiting the commonality that exists 
between storage, networking and computation; it therefore draws 
on possibilities that fall outside any one these fields when they are 
considered in isolation from one another. At the heart of the 
underlying analysis is an unremarkable observation: the state of 
every computer system consists of data that is stored, except when 
it is either propagating along a datapath or being transformed by 
a processor.  

From this common starting point, however, the engineering 
of systems has diverged: 
� Storage focuses on buffers that can maintain large amounts 

of data for long periods of time. 
� Networking focuses on the “fast path” that passes data 

quickly between wide area data paths. 
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� Computing focuses on very powerful mechanisms for 
transforming stored state. 
Based on these differences in implementation, practitioners 

in each area have come to distinguish their fields in terms of 
constructs that do not exist in the others: 
� Storage systems implement “files” that can be stored 

indefinitely with great fidelity. 
� Networks implement “datagrams” that have a source, a 

destination and a speed of transmission. 
� Computing implements “processes” that have an initial state 

and inputs, maintain intermediate state, and produce output. 
Constructs such as these have been highly valuable as an aid 

in dealing with the complexity of the underlying hardware 
systems and the huge numbers of possible states that they can 
assume.  At times, implementations that enshrine these constructs 
have been seen as the key to achieving performance, by allowing 
the optimization of interactions between components along the 
critical path.   

Yet sometimes such abstractions constrain the thinking and 
the implementation strategies of architects. History shows that 
when this happens, the way to new functionality, or even to the 
highest performance, can lie in looking past the constructs to the 
components, and working directly with them. Examples of such 
successful reductionism abound: load/store architecture (e.g. CDC 
6600), primitive OS kernels (e.g. Unix), RISC architecture (e.g. 
MIPS) and store-and-forward wide area networking (e.g. IP).  In 
each case, functionality is moved from a lower layer to a higher 
layer of the infrastructure, with a greater burden of scheduling 
and control being placed on the latter. Once the opportunity for 
architectural innovation is identified, the question is not whether 
it is “right” or “wrong,” but whether it has significant advantages 
from a systems engineering point of view. 

Logistical Network Computing views all computer systems 
as data stored in buffers that can be maintained, or moved to other 
(possibly distant) buffers, or transformed.   From this point of 
view, a block of data sitting on a disk can be treated as a long-
lived datagram that is not currently going anywhere; and similarly 
a datagram passing through a router can be seen as a process 
whose pages extend over space but are not transformed.  By 
understanding the commonality between these constructs, we 
hope to define a unified framework without artificial boundaries 
or “balkanization.”  If this approach were to succeed, would such 
a unified field of endeavor, focused on scalability as its principle 
design criterion, be what we now call “Networking?”  Our answer 
is yes, but it would also be much more. 

6. Related Work 
Logistical Network Computing touches on most aspects of 

resource management for wide area distributed systems, and so it 
has an overlap with most Distributed Operating System projects.  
The important categories are remote job execution [19], remote 
procedure call [20], state replication for fault tolerance and 
mobile code and agent infrastructures [21].  While this list is not 
exhaustive, space restrictions prevent us from giving a more 
complete account. 

The area of Active Networks [4] is obviously very closely 
related to Logistical Networking because it also seeks to use the 
storage and computational resources of intermediate nodes to 
implement innovative services.  As we have discussed at various 

points in the paper, the difference between the two is that Active 
Networks takes the step of placing an unbounded process 
execution at an intermediate node, which has the effect, 
predictable by reference to the end-to-end principles, of limiting 
the scalability of the system.  Avoiding this compromise is the 
defining goal of Logistical Networking. 

Calvert, Griffioen and Wen [22] have developed Ephemeral 
State Processing as a mechanism to maintain persistent state at IP 
routers and perform operations on it.  As with Logistical Network 
Computing, they followed the design principles of IP to create an 
architecture that conforms to the end-to-end principles: storage 
allocations are limited in size and duration, instructions are 
restricted to a limited set installed on the router, and both 
functions are best effort. However the scale of their ephemeral 
state is orders of magnitude smaller than the storage supported by 
Logistical Network Computing: storage allocations are limited to 
single 64 bit words stored for 10 seconds; primitive operations 
analogous to individual machine instructions act on one or two 
stored words.  While this greatly reduces the problem of 
scalability, it also restricts the applicability of their approach to 
very simple services. 

The other area of Distributed Systems that comes closest to 
the principles and methods of Logistical Networking is peer-to-
peer.  Peer-to-peer computing [13] systems differ from Logistical 
Network Computing because they tend to be application-specific 
and therefore not to be appropriate for deployment on common 
infrastructure.  Each application — SETI@home, folding@home, 
etc.— distributes its own computational processes to run on end 
user workstations, and so creates a separate non-interoperable 
infrastructure.  Attempts to create generic peer-to-peer computing 
platforms, such as Entropia’s, run in to the problem that the 
mobile code that runs on it must be trusted, so scalability is 
limited to corporate intranets. 
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