
To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

An End-to-End Approach to Globally Scalable
Programmable Networking

Micah Beck Terry Moore James S. Plank
Logistical Computing and Internetworking Laboratory

Computer Science Department
University of Tennessee

1 865 974 3548

{mbeck, tmoore, plank}@cs.utk.edu

ABSTRACT
The three fundamental resources underlying Information
Technology are bandwidth, storage, and computation. The goal
of wide area infrastructure is to provision these resources to
enable applications within a community. The end-to-end
principles provide a scalable approach to the architecture of the
shared services on which these applications depend. As a prime
example, IP and the Internet resulted from the application of these
principles to bandwidth resources. A similar application to
storage resources produced the Internet Backplane Protocol and
Logistical Networking, which implements a scalable approach to
wide area network storage. In this paper, we discuss the use of
this paradigm for the design of a scalable service for wide area
computation, or programmable networking. While it has usually
been assumed that providing computational services in the
network will violate the end-to-end principles, we show that this
assumption does not hold. We illustrate the point by describing
Logistical Network Computing, an extension to Logistical
Networking that supports limited computation at intermediate
nodes.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design — distributed networks, network
communications, store and forward networks

General Terms
Design

 This work is supported by the National Science Foundation (NSF) Next
Generation Software Program under grant # EIA-9975015, the Department
of Energy Scientific Discovery through Advanced Computing Program
under grant # DE-FC02-01ER25465, the NSF Internet Technologies
Program under grant # ANI-9980203, and the Center for Information
Technology Research. The infrastructure used in this work was supported
by the NSF CISE Research Infrastructure program, EIA-9972889 and
Research Resources program EIA-0224441.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ACM SIGCOMM 2003 Workshops, August 25&27, 2003, Karlsruhe,
Germany. Copyright 2003 ACM 1-58113-748-6/03/0008S$5.00.

Keywords
Logistical Network Computing, distributed state management,
active networking, programmable networking, store and forward
network, asynchronous communications, network storage, end-to-
end design, scalability, Internet Backplane Protocol.

1. INTRODUCTION
The mounting wave of enthusiasm for the idea of building a

new “cyberinfrastructure” draws much of its inspiration from the
manifest success of the Internet as a catalyst for collaboration
within the research community worldwide [1]. Various well-
publicized visions of the technology-rich environments of the
future — distributed collaboratories, global computing grids,
ubiquitous computing, pervasive computing, autonomic
computing — seek to expand and amplify the Internet’s power in
this regard. But when looked at through the lens of the Internet’s
success, even a casual review of such visions makes two points
about such a next generation infrastructure abundantly clear:
First, it must be more general than the current Internet, delivering
a much more capable set of services and resources. Second, and
less well remarked, it must scale at least as well as the current
Internet does, and better along some dimensions Yet for
infrastructure builders dealing with information technology in the
wide area, i.e. for the Networking and Distributed Systems
communities, this required combination of generality and
scalability has proved to be extremely elusive.

On one hand, Networking has traditionally been concerned
with “data communications,” or the accurate and timely transfer
of bits from one host system to another. This limited scope has
allowed it to apply stringent rules of architectural discipline,
notably the end-to-end principles [2], to the problem of designing
systems that can scale. The obvious example is the Internet,
which has successfully scaled to reach every country on the
globe, and may soon reach most communities. However, with the
recent exception of Logistical Networking [3], attempts to
generalize the network to include storage or compute services,
such as Active Networking [4], have generally run afoul of the
end-to-end principles [5] and proved difficult to scale up.

On the other hand, while the designers of distributed systems
would like to achieve Internet-levels of scalability, Distributed
Systems research grew out of work on operating systems, and its
scope has always been broader. Since its goals require more
general services, including storage and computation, the design of
these systems almost never invokes the end-to-end principles.
Niches that have developed with the goal of enabling new
functionality in the wide area, such as storage networking and
“Grids,” routinely treat scalability as a secondary matter, to be

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

As the name suggests, the goal of Logistical Networking is
to bring data transmission and storage within one framework,
much as military or industrial logistics treat transportation lines
and storage depots as coordinate
elements of one infrastructure.
Achieving this goal requires a
form of network storage that is
globally scalable, meaning that
the storage systems attached to
the global data transmission
network can be accessed and
utilized from arbitrary endpoints.
To create a shared infrastructure
that exposes network storage for
general use in this way, we set
out to define a new storage stack
(Figure 1), analogous to the
Internet stack, using a bottom-up
and layered design approach that
adheres to the end-to-end
principles. We discuss this design
model in more detail below, but
the important thing to note here is
that the key to attaining
scalability using this model lies in
defining the right basic abstraction of the physical resource to be
shared at a low level of the stack. In the case of storage the
Internet Backplane Protocol (IBP) plays this role.

dealt with after new protocols and intermediate nodes have been
designed and tested.

Our position is that a successful way to create a scalable,
programmable network, capable of providing the kind of
generality that many advanced applications and environments
will require, is to integrate into the network a compute service
that adheres to the end-to-end principles.

Physical

exNode

Logistical File System

Application

Logistical Runtime System
(LoRS)

IBP

Local Access

L-Bone

Figure 1: The Network

Storage Stack

Given previous experience and prevailing attitudes, the most
obvious and serious objection to this position is that it advocates
doing something that cannot be done, but we argue here that it
can be. Since our proposed approach leverages our previous work
in the area of Logistical Networking (LoN)[6], we call it
Logistical Network Computing (LoNC). Since the analysis we
give here extends the analysis of globally scalable network
storage that we previously presented at SIGCOMM 2002,
interested readers are directed to that work [3].

2. Building on Logistical Networking
For several years we have been exploring the hypothesis that

the Internet design paradigm for scalable resource sharing, which
is based on the end-to-end principles [2, 5], can be applied more
generally to both storage and processor resources. Our initial
focus has been on storage, and under the heading of Logistical
Networking (LoN), we have used the Internet model to create a
highly scalable network storage service based on the Internet
Backplane Protocol (IBP) [7]. Because it can scale globally, IBP
supports the incorporation of shared, interoperable storage
elements, called IBP “depots,” into the network, creating a
communication infrastructure that is enriched with storage which
is exposed to application developers and end users in an
unprecedented way.

IBP is the lowest layer of the storage stack that is globally
accessible from the network. Its design is modeled on the design
of IP datagram delivery. Just as IP is a more abstract service
based on link-layer datagram delivery, so IBP is a more abstract
service based on blocks of data (on disk, memory, tape or other
media) that are managed as “byte arrays.” By masking the details
of the storage at the local level — fixed block size, differing
failure modes, local addressing schemes — this byte array
abstraction allows a uniform IBP model to be applied to storage
resources generally. The use of IP networking to access IBP
storage resources creates a globally accessible storage service.

Since computation is inherently more complex than storage
in various ways, it is natural to assume that LoNC will be
inherently more challenging than LoN. This is certainly true. Yet
there are two good reasons to set the stage for the discussion of
LoNC by briefly reviewing a few main points about LoN, whose
design and implementation preceded it.

The first reason is that it is easier to see the outlines of the
basic idea in the context of network storage than it is in the
context of network computation. Although the same end-to-end
paradigm is being applied in both cases, the relative simplicity of
storage, and its obvious parallels with the case of bandwidth,
show more clearly how the model can be extended to a new
resource.

As the case of IP shows, however, in order to scale globally
the service guarantees that IBP offers must be weakened, i.e. it
must present a “best effort” storage service. First and foremost,
this means that, by default, IBP storage allocations are time
limited. When the lease on an IBP allocation expires, the storage
resource can be reused and all data structures associated with it
can be deleted. Additionally an IBP allocation can be refused by
a storage resource in response to over-allocation, much as routers
can drop packets; such “admission decisions” can be based on
both size and duration. Forcing time limits puts transience into
storage allocation, giving it some of the fluidity of datagram
delivery; more importantly, it makes network storage far more
sharable, and easier to scale.

Second, and more importantly, the work on LoNC builds
directly on the storage service that LoN supplies, and this
provides the logistical approach to computation in the network
with a tremendous advantage that previous efforts in this general
area did not possess: a scalable, general purpose solution to the
problem of managing the state of distributed applications. The
absence of such an infrastructure for interoperable state
management is well known to present a major impediment to the
creation of advanced distributed applications that can actually be
deployed [8]. Since LoN technology provides a generic storage
service, which is exposed for application scheduling and is
scalable to the wide area, it lays the foundation for solving this
problem and thereby opens up opportunities for new lines of
attack on the problem of scalable network computing. The basic
outlines of LoN, therefore, are essential context for understanding
Logistical Network Computing.

The semantics of IBP storage allocation also assume that an
IBP storage resource can be transiently unavailable. Since the
user of remote storage resources depends on so many
uncontrolled, remote variables, it may be necessary to assume that
storage can be permanently lost. Thus, IBP is a “best effort”
storage service. To encourage the sharing of idle resources, IBP
even supports “soft” storage allocation semantics, where allocated
storage can be revoked at any time. In all cases such weak

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

semantics mean that the level of service must be characterized
statistically.

IBP storage resources are managed by “depots,” which are
servers on which clients perform remote storage operations. IBP
client calls fall into three different groups [7]: IBP_allocate
and IBP_manage for storage management; IBP_store,
IBP_load, IBP_copy, and IBP_mcopy for data transfer; and
IBP_status, for depot management. The IBP_allocate
function is the most important operation. It is used to allocate a
byte array at an IBP depot, specifying the size, duration
(permanent or time limited) and other attributes. A chief design
feature is the use of capabilities (cryptographically secure
passwords) [9]. A successful IBP_allocate call returns a set
of three capabilities for the allocated byte array — one for
reading, one for writing, and one for management — that may be
passed from client to client, requiring no registration from or
notification to the depot

The other component of the storage stack that is critical to
the logistical approach to network computation is the exNode
[10]. Building on end-to-end principles means that storage
services with strong properties — reliability, fast access,
unbounded allocation, unbounded duration, etc.—must be created
in higher layers that aggregate more primitive IBP byte-arrays
beneath them. To apply the principle of aggregation to exposed
storage services, however, it is necessary to maintain state that
represents such an aggregation of storage allocations (e.g.
distribution or replication across multiple depots), just as
sequence numbers and timers are maintained to keep track of the
state of a TCP session.

Fortunately there is a traditional, well-understood model to
follow in representing the state of aggregate storage allocations.
In the Unix file system, the data structure used to implement
aggregation of underlying disk blocks is the inode (intermediate
node). Under Unix, a file is implemented as a tree of disk blocks
with data blocks at the leaves. The intermediate nodes of this tree
are the inodes, which are themselves stored on disk.

Following the example of the Unix inode, a single,
generalized data
structure called
an external node,
or exNode, has
been
implemented to
aggregate byte
arrays in IBP
depots to form a
kind of pseudo-
file (Figure 2).
We call it a
pseudo-file
because it lacks
features (e.g. a
name, ownership
metadata, etc.)
that a file is
typically
expected to have.
To maximize
application

independence and interoperability, exNodes encode their resource
information (e.g. IBP capabilities, URLs, etc.) and associated
metadata in XML.

The exNode provides the basis for a set of generic tools,
called the Logistical Runtime System (LoRS), for implementing
files and other storage abstractions. The LoRS tools, which are
freely available at (http://loci.cs.utk.edu), can be used in a wide
area testbed of IBP depots (currently +15TB) called the Logistical
Backbone (L-Bone). Today the L-Bone encompasses more than
200 public nodes in 19 countries, and this deployment of LoN
technology provides a rich platform for experimentation on a new
approach to scalable network computation.

3. SCALABILITY OF NETWORK
COMPUTATION

In designing a scalable network computing service, we
follow a methodology that is simple, but which reverses the
typical order of thought in the design of distributed systems.
Rather than starting with an idea of what level of functionality we
require of the network, or what sort of intermediate nodes we
want to build, we start with the requirement that the system scale,
using adherence to the end-to-end principles as the means by
which such scalability can be achieved. This demand is stringent
enough to dictate many important features of the basic service.

The most important consequence of requiring scalability is
that the semantics of the service must be simple and weak [5]. If
the semantics are too complex, it will fail the requirement that
services implemented at intermediate nodes be generic. Likewise,
if the guarantees made by the service are too strong, then it will
not compose with a scalable communication network, such as the
Internet, without breaking. This approach was followed in the
design of IP for wide area communication, or Internetworking,
and in the design of the Internet Backplane Protocol (IBP) for
wide area storage services, or Logistical Networking [3]. In this
section, we will show how a wide area network compute service
can be created by systematically applying this same approach to
the basic semantics of network computation. In analyzing
different dimensions of the service — availability, continuity,
statefulness, correctness, and security — the way in which
corresponding aspects of IP and IBP were designed will serve as
guides. The resulting design parameters will be used to specify a
computational extension to IBP, thereby defining LoNC.

Figure 2: The exNode compared to a
Unix inode.

3.1 Availability
The core service of the Internet is best-effort forwarding of

IP datagrams at an intermediate node. The best-effort nature of
the service means that any particular router may be unavailable.
Internet routing takes advantage of redundancy in the underlying
topology of the network to find different paths between endpoints
that avoid the unavailable router. This strategy is good enough to
ensure a datagram delivery service between endpoints that is
acceptably reliable.

In LoN, the core service is storage of data on, and transfers
of data between, intermediate nodes that implement IBP. Like
datagram service for the Internet, IBP is a best-effort service, so
users must be prepared for an intermediate node to be unavailable
for unknown periods of time. But unlike communicating
applications, which maintain data state at the endpoint in
anticipation of a possible loss of connectivity, storage
applications must rely on redundancy across multiple
intermediate nodes to overcome outages. As a result, although

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

applications cannot rely on predictable locality in their access to
storage, the service seen by end-users is acceptably reliable.

In the case of LoNC, the core service will be the
transformation of stored state. As with IP and IBP, a best-effort
computational service has to allow for the unavailability of an
intermediate node that performs computation. In order for the
service to proceed when a particular node becomes unavailable,
redundant resources must be used to perform the computation on
some other node. This means that the data on which the
computation acts must be accessible even in the presence of
failures in nodes that may both store and compute; such state-
management strategies fall into the domain of LoN. Although the
need to find alternate compute nodes and retrieve stored data from
remote sources means that applications cannot rely on predictable
locality in their access to computation, the service seen by end-
users will be acceptably reliable.

In a scalable Wide Area Network (WAN), computing
resources can be intermittently unavailable (or available only with
inadequate quality of service) due to a number of conditions in
the network, including traffic congestion, routing problems,
topology changes and malicious interference. These conditions
are resolved in time frames ranging from less than a second to
longer than days. In the face of such problems, a variety of
familiar end-to-end strategies should exist for ensuring
availability. These range from simple retry, to redundant
computations spread across the network, to maintaining high-
latency, high-reliability systems. Obviously, these approaches
must be implemented at the end-points, both in order to ensure
delivery to the end-point and to achieve the necessary level of
sensitivity to the requirements of the end-point operating systems,
applications and users.

3.2 Fragmentation
The basic difference between circuit switching and packet

networking is the unit of service: once a circuit is set up, the
amount of data that can flow through it is in principle unbounded,
whereas every intermediate node in a packet network has a
maximum transmission unit (MTU). End-to-end services such as
TCP streams that are unbounded in their handling of data are
implemented by aggregating the underlying datagrams, which
themselves may be implemented by aggregating underlying
packets.

As applied to LoN, restricting the basic unit of service means
that both the size and the duration of storage allocation have
limits that are imposed by the storage intermediate node or depot.
Limiting the size of allocations means that a large data object may
have to be spread across multiple depots. This type of
fragmentation based on size limitations is well known in all
storage systems; but fragmentation due to temporal restrictions is
not. Limiting the duration of a storage allocation means that
every allocation is a lease, and while it may be renewable, this is
subject to availability of resources and not guaranteed. In the
face of an expiring allocation that cannot be renewed, an endpoint
must be prepared to transfer the data to another depot or to lose it.
This is a highly unusual attribute for a storage service, and is one
of the key points separating LoN as a scalable service from other
storage services.

When applied to computation, fragmentation of service
implies that the size and duration of a computational service have
limits that are imposed by the computational intermediate node.
(As we explain below, in LoNC, this intermediate node is a

modified IBP depot.) The limit on size means that the local state
that any one computational service transforms has a limit. Such
limits on process size exist in all operating systems. But as with
storage, the limit on duration of a computation is less intuitive,
although it has historical roots.

Fragmenting a computation means that any particular request
for service has a fixed upper bound on the computational
resources that it can consume. As with storage, this request may
be renewable, but the endpoint must be prepared for the case in
which it is not renewed due to resource oversubscription. When a
computational fragment is done, the data it has just transformed
will, in general, still be available. Continuing the computation
means making a new service request on that or another
computational intermediate node.

However, in all these cases — bandwidth, storage, and
computation — the reason for limiting the maximum unit of
service, and thereby causing fragmentation, is that otherwise it is
much more difficult to share the resources of the intermediate
node, and hence much more difficult to make the service scale up.
The resources consumed by a circuit, a permanent storage
allocation or an unbounded computational process can be high
enough that it is not possible to provision a network to meet
community needs without per-use billing. Weakening the service
by imposing fragmentation means that sharing is enhanced at the
expense of deterministic service guarantees.

But such weakened semantics are no more a part of the
traditional model of computation than they were a part of the
traditional model of storage. Conventional computational services
either execute jobs to completion or perform remote procedure
calls that transform inputs to outputs. Accepting fragmentation of
service in LoNC means that we must view our computational
service as transforming stored state within the intermediate node,
perhaps completing only a part of the “job” or “call” ultimately
intended by the end user. To complete the kind of unbounded
computations that some applications require, multiple
computational fragments will have to be applied, either using a
single computational intermediate node or using many, with
attendant movement of state for the purposes of fault tolerance
and possibly parallelism.

An obvious objection to this kind of fragmentation of
execution is that it requires active management of the
computation by the end-point. It is commonly viewed as a
positive aspect of execution to completion that the endpoint need
not participate actively in the progress of the computation, and
can in fact focus its own resources elsewhere until the result of
the remote computation is required.

3.3 Statelessness
In using the best-effort services of routers to construct

stronger services end-to-end, Internet endpoints rely partly on the
fact that intermediate nodes are stateless, so that the construction
of an alternate route affects only performance characteristics seen
at the end-points. Of course storage service cannot be stateless,
yet a similar philosophy was followed in the design of IBP for
LoN. The only state a depot maintains is the state required in
order to implement its basic services, which are allocation of
storage, writing and reading. It maintains no additional state
visible to the endpoint. The intent is to allow depots to appear
interchangeable to the endpoint, except for the data that they
actually store. Thus, although endpoints do carry the burden of

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

keeping track of data stored at depots, they bear no additional
burden of managing other visible state.

Like storage, computation (defined as transformation of
stored state) can only be performed at an intermediate node that
can maintain persistent state. This is the reason that computation
is a natural extension of the IBP depot, and LoNC is a natural
extension of LoN. However, following the philosophy of
minimizing control state, the computational services implemented
at the depot must not maintain any visible state other than that
which they transform.

From a practical point of view, this means that there should
be no state maintained in the operating system or other portions of
the computational intermediate node that is required for the
correct invocation of computational services. If a computational
service were to change the state of the system in some way, for
instance by writing data to a local temporary file, then the
existence of that temporary file must not be required in order for
any future computation to proceed. If file system state must be
maintained between computational services, then it has to be
modeled as an explicit part of the stored state transformed by the
service, stored by IBP and managed by an endpoint.

Using explicit storage to maintain temporary state in a chain
of computations is a burden on the endpoint, but it is not hard to
understand or to incorporate into a runtime system. Another
limitation imposed by statelessness is that network connections
cannot be explicitly maintained between invocations of
computational services. There are two approaches to dealing with
this: either use a connectionless mode of communication, such as
writing into and reading from a tuple space [11]; or else put the
burden of communication on the endpoint, requiring it to use LoN
services to implement the transfer of state between intermediate
nodes. Thus, the choice is either to maintain no visible state or to
make the state explicit and allow it to be managed by the
endpoint.

3.4 Correctness
The use of untrusted intermediate nodes improves

scalability, but it requires that the work they do be checked at the
endpoint to establish correctness. In the cases of data
transmission and storage, the receiver has no way to check with
certainty that the data received was in fact the same as that sent;
but if redundancy is added in the form of checksums, then the
receiver can make a probabilistic check that the data received is
internally consistent. This does not provide protection against
malicious intermediate nodes, which can send data that is
incorrect but internally consistent. It does, however, guard against
errors.

 One might think that settling for non-scalable network
computation would make life easier because it allows
computational nodes to be authenticated, and such authentication
may be deemed sufficient to establish trust. But in a wide area
computing infrastructure, a trusted but faulty or malicious node
can cause unbounded damage. This is the result of ignoring the
end-to-end principles.

The equivalent of checksums for computation is for an
operation to return enough information for the result to be
verified, at least probabilistically. A simplified example is the
Greatest Common Divisor (GCD) operation: if it returns all of the
prime factors of both operands, then the GCD it returns can be
verified trivially. However, if only the GCD is returned, the cost
of verifying it is the same as the cost of performing the operation

locally. The redundancy in the results of the operation provides a
check on correctness, at essentially no additional cost; and
because it is deterministic rather than probabilistic, it does guard
against malicious intermediate nodes.

Clearly, arbitrary operations cannot be checked in this way,
and adding redundancy to complex operations may be very
difficult or awkward. However, part of the research program
associated with LoNC is to develop sets of operations, or “bases,”
for useful classes of network computation that are verifiable.
These classes may be limited, but because their implementation
will follow the end-to-end principles, they will not have the
vulnerability to faulty computational nodes of current network
computing systems based on trust.

3.5 Security
Untrusted intermediate nodes may steal or corrupt the data

they handle. End-to-end security is implemented through
encryption: encrypted data cannot be read or be forged without
possessing the appropriate key. As in the discussion of
correctness above, this works quite well in the cases of data
transmission and storage because encryption commutes with both
of these operations (moving and storing data). However,
conventional encryption algorithms do not commute with
arbitrary computations, and so in current computational systems,
it is necessary to decrypt at the compute server, establishing
security only between the client and that server. Again, there is
no end-to-end security; the usual approach is to authenticate the
server and rely on trust, with the same vulnerability.

An end-to-end approach to security in network computation
would require that we use encryption that commutes with the
operations implemented on the intermediate node. While it is
hard to see how current strong encryption algorithms could
commute with arbitrary computation, it is possible to conceive of
weaker encryption (perhaps obscuring is a better word) that might
commute with specific operations. A very simple example would
be this: if the operation were a bitwise logical operation, like
XOR, applied to large blocks of data, then permutation of the data
would serve to obscure it, but the inverse permutation is simple to
apply.

It is easy to see the limitations of this approach, and as with
correctness, finding useful sets of operations that can be made
secure in an end-to-end way is part of the LoNC research
program. The thing to see is that this is the only approach that
provides end-to-end guarantees for network computing. It can be
combined with approaches based on authentication and trust for
the sake of generality (i.e. trust but verify), however the
difference in strength of the guarantees provided by the two
approaches must be well understood. Any approach that is not
end-to-end is vulnerable to betrayal by a trusted intermediate
node.

4. THE NFU AND THE EXNODE
4.1 A Generic Network Computing Service

Before exploring the question of how to build a
programmable network on the foundation of the kind of weak
computational service which, as we have just seen, conformity to
the end-to-end principles requires, it is important to clarify our
use of the term “programmable networking.” In the context of
Active Networking, “programmable networking” means
executing computational processes on IP routers and maintaining
process state there in the processing of large flows, or even across

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

multiple flows. For LoNC, on the other hand, programmable
networking means adding primitive state transformation
operations to a LoN infrastructure that already supports flexible
management of persistent state, and then exposing both storage
and computational resources for general use according to the end-
to-end paradigm. As already noted, according to the end-to-end
principles the key to achieving scalability lies in defining the right
basic abstraction of the physical resource to be shared at the
lowest network accessible level of the stack. For LoN the Internet
Backplane Protocol (IBP) provides an abstraction of storage that
plays this role. LoNC merely extends IBP to encompass a
separate abstraction of processor resources.

To add processing power to the depots in a logistical
network using this approach, LoNC must supply an abstraction of
execution layer resources (i.e. time-sliced operating system
execution services at the local level) that satisfies the twin goals
of providing a generic but sharable computing service, while at
the same time leaving that service as exposed as possible to serve
the broadest range of purposes of application developers [5]. The
execution layer, which is our term for computational service at
the local level, lies below IBP in the stack shown in figure 1, at
the same level as the local storage access layer. Following the
familiar pattern, all stronger functions would then be built up in
layers on top of this primitive abstraction.

 Achieving these goals requires that the abstraction mask
enough of the particularities of the execution layer resources, (e.g.
fixed time slice, differing failure modes, local architecture and
operating system) to enable lightweight allocations of those
resources to be made by any participant in the network. The
strategy for implementing this requirement is to mirror the IP
paradigm. This strategy has already been used once in creating a
primitive abstraction of storage in IBP to serve as a foundation for
Logistical Networking [3]. That case showed how the generic
service could be made independent of the particular attributes of
the various underlying link or access layer services by addressing
the three key features: resource aggregation, fault detection, and
global addressing. Table 1 shows the results.

The abstractions of IP datagram service and IBP byte array
service allow uniform models to be applied globally to network
and storage resources respectively. In the case of IP, this means
that any participant in a routed IP network can make use of any
link layer connection in the network regardless of who owns it;
routers aggregate individual link layer connections to create a

global communication service. IP-based aggregation of locally
provisioned, link layer resources for the common purpose of
universal connectivity constitutes the form of sharing that has
made the Internet the foundation for a global information
infrastructure. A parallel analysis applies in detail to IBP and the
different underlying access layers of the network storage stack.

We call the new abstraction of computational resources at
the execution layer the Network Functional Unit (NFU), and
implement it as an orthogonal extension to the functionality of
IBP. The name “Network Functional Unit” was chosen to fit the
pattern established by other components of the LoN
infrastructure, which expresses an underlying vision of the
network as a computing platform with exposed resources that is
externally scheduled by endpoints. The archetype here is a more
conventional computing network: the system bus of a single
computer (historically implemented as a backplane bus), which
provides a uniform fabric for storing and moving data. This was
the analysis that was invoked in naming the fundamental protocol
for data transfer and storage the “Internet Backplane Protocol.”
In extending that analogy to include computation, we looked for
that component of a computer that has no part in data transfer or
storage, serving only to transform data placed within its reach.
The Arithmetic Logic Unit (ALU) seemed a good model, with its
input and output latches serving as its only interfaces to the larger
system. For this reason, we have named the component of an IBP
depot that transforms data stored at that depot the Network
Functional Unit.

 Just as IP is a more abstract service based on link-layer
datagram delivery, IBP’s Network Functional Unit is a more
abstract service based on computational fragments (e.g. OS time
slices) that are managed as "operations." The independence of
NFU operations from the attributes of the particular execution
layer is established by working through the same features of
resource aggregation, fault detection, and global addressing.
Table 1 displays the results for the NFU side by side with the
previous cases.

This higher level “operation” abstraction allows a uniform

NFU model to be applied to computation resources globally,
which is essential to creating the most important difference
between execution layer computation slices and NFU operation
service: Any participant in a logistical computation network can
make use of any execution layer storage resource in the network

Table 1: Generic service abstractions for data transmission (IP), data storage (IBP), and computation (NFU).

 IP (Bandwidth) IBP (Storage) NFU (Computation)

Resource
Aggregation

Aggregation of link layer packets
masks its limits on packet size

Aggregation of access layer blocks
masks the fixed block size

Aggregation of execution layer time
slices masks the fixed slice size

Fault
Detection

Fault detection with a single, simple
failure model (faulty datagrams are
dropped) masks the variety of
different failure modes

Fault detection with a simple failure
model (faulty byte arrays are
discarded) masks the variety of
different failure modes

Fault detection with a simple failure
model (faulty operations terminate
with unknown state for write-
accessible storage) masks the variety
of different failure modes

Global
Addressing

Global addressing masks the
differences between LAN
addressing schemes and masks its
reconfiguration.

Global addressing based on global
IP addresses masks the difference
between access layer addressing
schemes.

Global depot and operation naming,
based on global IP addresses and a
uniform operation namespace,
masks the difference between
execution layer platforms

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

regardless of who owns it. The use of IP networking to access
NFU computational resources creates a global computing service.

Whatever the strengths of this application of the paradigm,
however, it leads directly to two problems. First, the chronic
vulnerability of IP networks and LoN to Denial of Service (DoS)
attacks, on bandwidth and storage resources respectively, applies
equally to the NFU’s computational resources. The second
problem is that the classic definition of a time slice execution
service is based on execution on a local processor, so it includes
strong semantics that, as we have already shown, are difficult to
implement in the wide area network.

Following that line of analysis, and the model of IBP, we
address both of these issues by weakening the semantics of
compute resource allocation in the NFU. Most importantly, NFU
allocations are by default time limited, and the time limits
established by local depot policy makes the compute allocations
that occur on them transient. But all the semantics of NFU
operations are weaker in ways that model computation accessed
over the network. Moreover, to encourage the sharing of idle
resources, the NFU supports "soft" operations that use only idle
cycles, as in Condor [12] and peer-to-peer systems [13]. In all
cases the weak semantics mean that the level of service must be
characterized statistically.

As illustrated in Figure 3, we can identify a logical
progression of functionality in intermediate nodes: the router
forwards datagrams, exercising control over the spatial dimension
by choosing between output buffers. The depot adds control over
the temporal dimension by enabling the storage of data in an IBP
allocation as it passes through. Finally, the NFU is implemented
as a module, added to an IBP storage depot, that transforms stored
data. If we consider spatial direction, time and value to be
coordinates of a single space, then the state of any data item is a

point in this vector space, and the progression is one of increasing
simultaneous control over multiple dimensions.1

Since a depot may model either disk or RAM storage
resources, some NFU operations may apply only to data stored in
RAM, while others may also apply to data stored on disk.

Restricting an operation to data held in RAM forces any
necessary movement between disk and RAM to be explicitly
directed by the end-point using IBP, just as in data movement
between depots. The NFU implements a single additional
operation, NFU_op:

NFU_op(depot, port, operation, soft,
 cap_1,... cap_n)
In this simplified form the NFU_op call is used to invoke an

operation at the IBP depot, specified by the IP address and port it
binds to. The operation is specified as an integer argument,
whose meaning is set by a global registry of operation numbers.
The arguments to an operation consist of a list of capabilities
(cryptographically secure names) for storage allocations on the
same depot where the operation is being performed. Thus, there
is no implicit network communication performed by a given
depot in responding to an NFU_op call. A flag indicates whether
the operation is soft (using only idle cycles). The capabilities
specified in this call can enable reading or writing, and the
limitations of each are reflected in the allowed use of the
underlying storage as input or output parameters. The number
and type of each capability are part of the signature of the
operation, specified at the time the operation number is registered.
Any violation of this type information (for instance, passing a
read capability for an output parameter) may cause a runtime
error, but it is not checked by the implementation of NFU_op at
the client side. Such effects as aliasing between capabilities are
also not detected.

There are a number of important and obvious refinements to
this call, such as handling scalar arguments and storage
capabilities differently, that give it more structure and can, in
some instances, make correct use and efficiency more likely. An

important difference between NFU_op and a remote procedure
call mechanism is that since the data items are assumed to be
already stored in capabilities (i.e. they are already “marshaled”),
all issues of data representation and type are pushed onto the
operations themselves, rather than being part of the NFU_op call.

Figure 3: Intermediate nodes to manage bandwidth (IP router), storage (IBP Depot), and computation (NFU-enabled Depot)

The behavior of the IBP depot in response to an NFU_op
call is to map the specified capabilities into an address space, look
up the operation in a library of dynamically invoked calls, and
execute it. The set of calls implemented at each depot is
determined by local policy. Because the storage allocations are

1 This unified point of view was nicely expressed by Dan Hillis in

his 1982 paper “Why Computer Science is No Good,” when he
remarked that “…memory locations…are just wires turned
sideways in time.”[14]

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

local to the depot, simple memory mapping operations can be
used, obviating the need for any explicit file access when
invoking an operation. This limits the implementation of
NFU_op to depots implemented in RAM or running on operating
systems that can map files directly to a process address space.
The fragmented nature of the operation can be enforced in two
ways: by refusing to add to the library any call that does not
provide a strict limit on resource use, and/or by monitoring
resource use and terminating execution when the limit is reached.
There may be operations which are of variable duration, and for
which it makes sense for the user to request a long vs. a short
execution, as is the case in IBP storage allocations, but we have
chosen to ignore this complication here.

4.2 A Data Structure for the Flexible
Aggregation of Network Computation

From the point of view of the Distributed Computing
community, it is likely that one of the most striking features of the
LoNC stack is the way it appears to simply jettison the well
known methods of usage for computation, viz. processes invoked
to run programs or execute procedure calls to completion. These
familiar abstractions can be supported in the logistical paradigm,
but that support must conform to its “exposed-resource” design
philosophy embodied in the end-to-end principles. According to
these principles, implementing abstractions with strong properties
— reliability, fast access, unbounded size, unbounded duration,
etc.— involves creating a construct at a higher layer that
aggregates more primitive NFU operations below it, where these
operations and the state they transform are often distributed at
multiple locations. For example, when data is stored redundantly
using a RAID-like encoding, it is fragmented and striped across
depots and parity blocks are computed and stored also. All of the
storage allocation and metadata representing its structure is stored
in an exNode. In the event that data is lost, the exNode is
consulted and data movement and XOR operations are issued to
reconstruct it.

As with IBP, however, to apply the principle of aggregation
to exposed computations, it is necessary to maintain control state
that represents such an aggregation, just as sequence numbers
and timers are maintained to keep track of the state of a TCP
session. In the case of logistical storage allocations, we followed
the traditional, well-understood model of the Unix file system’s
inode, the data structure used to implement aggregation disk
blocks to create files, in designing a data structure called the
exNode to manage aggregate IBP allocations [3]. Rather than
aggregating blocks on a single disk volume, the exNode
aggregates byte arrays in IBP depots to form something like a
file. The exNode supports the creation of storage abstractions
with stronger properties, such as a network file, which can be
layered over IBP-based storage in a way that is completely
consistent with the exposed resource approach.

The case of aggregating NFU operations to implement a
complete computation is similar because, like a file, a process has
a data extent the must be built up out of constituent storage
resources. In a uniprocessor file system like Unix, the data
structure used to implement such aggregation is the process
control block, which includes both a memory map component for
RAM resources and a swap map component for disk resources.
In fact, process extents and files are very closely related, as can
be seen by the existence of system calls like mmap that identify

the storage extent of a file with part of the data extent of a process
[10].

Exposing the
primitive nature of
RAM and disk as
storage resources has
the simplifying effect of
unifying the data extent
of a file with the data
extent of a process;
both can be described
by the exNode (Fig. 4).
But each must be
augmented with
additional state to
implement either a full-
fledged network file or
a full-fledged network
process. Thus, the
closely related services
of file caching, backup,
and replication, on the
one hand, and process
paging, checkpoint, and
migration, on the other,
can be unified in a single set of state management tools.

Figure 4: The exNode provides a
uniform view of data and process

state in LoNC

4.3 Pipelining for NFU performance
At this point, the reader may wonder how we propose to

obtain any degree of performance out of such a fragmented
service, a service where each time slice must be individually
allocated, and where data movement and control must reside at a
possibly distant network end-system. In truth, this is one more
component of our research program, but one that we believe we
have powerful tools to address. In this section, we briefly sketch
the analogy we see between the execution of NFU operations in
the wide area and the execution of a stored program on a
pipelined RISC processor architecture.

Any computation or service can be characterized as taking
an initial state S0 and applying a series of primitive
transformations t0, t1,… tn, generating a sequence of intermediate
states Si = ti(Si-1) and a final state Sn. When the computation
takes place on a network intermediate node, such as an NFU-
enabled depot, there is an issue of how that sequence of primitive
transformations is to be organized and effectively invoked.

One approach is to associate a local generator for the entire
sequence of operations with a “service” and invoke that service
using a single name ti = G(Si). A benefit of this strategy is that
the sequence of transformations can be generated with no latency
and applied directly to the state stored on the intermediate node.
Its weakness is that the intermediate state Si is generally bound to
the intermediate node, due to non-portable encoding and storage
of data and transformations. Also, by implementing the generator
at the intermediate node the set of available services is defined by
what the operator of that node is willing to load.

Another approach is to invoke the sequence of
transformations explicitly, making each primitive operation an
individual “service.” In this model, the generator must be used
remotely to determine the next transformation to apply. The
advantage of this strategy is that it is easier to define the primitive
transformations in a portable way, at least for certain classes of

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

transformations. By moving the generator to the edge, the
particular services that can be built out of those transformations
are not dependent on the operator of the intermediate node, within
certain bounds on the utilization of node resources. The
disadvantage of this approach comes from the latency in the
application of the generator and the issuing of primitive
transformations, as well as from the overhead of issuing a
network operation for every primitive operation.

The form of the problem being confronted here is the same
as that of a well-known problem in the history of computer
architecture: how to generate and issue a stream of micro-
operations to drive a RISC processor. In that case, two important
features were used to address issues of latency and overhead for
streams of fine-grained operations: pipelining and caching.
� A standard approach to overcoming the latency of issuing

instructions is to pipeline them: later instructions are sent
before responses have been received from earlier
instructions.

� When the generation function G is highly regular, it is
possible to store a portion of it locally on the intermediate
node and then to substitute local generation for remote
generation in some cases. With caching, this is done
automatically by introducing two modifications to the
scheme:
o The entire generation function is modeled as a stored

program and program counter.
o Control is reversed, with the remote generator being

invoked explicitly by the intermediate node (the
FETCH operation).

Thus, by using pipelining, and perhaps even a stored program
model with caching, we believe that the performance gained
through uninterrupted operation of a stand-alone process
executing at the intermediate node can be granted to the NFU
when it conforms to the requirements of the end-system. But the
end system would never relinquish the discretion to limit such
independence and exert application-specific control.

4.4 NFU Scenarios
Creating a generic network computing service that conforms

to end-to-end principles would be a mere curiosity unless there
were real applications that could make use of it. Although we feel
that various compelling applications for the NFU can be found in
areas such as multimedia content distribution, digital libraries,
distributed database design, and Grid services for scientific
computing, we here discuss only a few relatively simple
examples.
4.4.1 Filtering a stream of frames

An active service that can be easily implemented using the
NFU is a filter that applies a test to every frame in a stream of
frames and discards those that fail. This example is stateless,
involving only the remote application of the test through a call to
the NFU and action on the result.

But such a simple operation can be progressively elaborated.
A more complex version eliminates duplicate frames by always
storing the previous frame in a persistent buffer. The per-frame
test compares the value of the stored frame to the current frame.
Whenever the current frame differs from the previous frame, it
becomes the new stored frame and the old value of the stored
fame is discarded.

A still more complex version stores the initial frame and
compresses the stream by sending only a difference function
computed between the stored frame and the current frame. The
stored frame is used until a difference is encountered that is larger
than some fixed threshold. At that point, the entire current frame
is sent and it becomes the new stored frame.

In all cases, a controlling program at a network endpoint is
responsible for moving the stream of frames through the depot
and invoking the NFU operations that apply the test and, in the
last case, compute the difference function. A persistent
controlling state of the network process exists at the edge,
represented by an exNode and controlled by a conventional
process.

A measure of fault tolerance can be achieved in this scenario
by writing the stored frame redundantly to multiple depots
whenever it changes. Furthermore, by maintaining a copy of
frames sent to the filtering depot at the sender until they have
been filtered and forwarded, failure at the depot can be recovered
through recovery of state and restarting any NFU operations
whose result state has been lost. The type of redundant state
management and the resulting degree of fault tolerance are the
responsibility of, and are under the control of, the endpoint
program.
4.4.2 Merging streams of records

 Consider several streams of records being produced by
multiple senders and merged, in order, at intermediate nodes
according to some record comparison operation. In this case, a
conventional approach would be to locate a merge process at each
intermediate node and have the nodes communicate to implement
the flow control necessary to keep their queues from overflowing.
Sessions between intermediate nodes that are so established have
state that is stored at the nodes and is not externally visible.

One of the key problems in conventional treatments of this
kind of application is that the end user has to establish the
authority to start the necessary merge process at each operation.
Given that the process encapsulates not only the notion of
comparison required to implement the merge, but also the policies
for flow control, it is likely to be application-specific rather than
generic. This means that it must be expressed as a program that
executes at the intermediate node. But if the problem of
establishing the trust necessary for such execution can be
overcome, the merge can be implemented.

However, an issue immediately arises concerning reliability:
if any intermediate node fails, the data and session state that were
located at that node, or in transit to or from it, at the time of
failure will be lost. What is required is a more complex scheme
for managing intermediate state. Enough redundancy must be
maintained in the stored state of the merge tree to recover from a
node failure, and the control state required to make use of that
stored state must be accessible outside of any one node. This issue
can be addressed in the design of a merge process that is
implemented at each intermediate node, but it becomes a difficult
problem in distributed control. LoNC, however, offers a clear
alternative.

In order to implement the merge using LoNC, it is only
necessary to have the basic comparison and merge operations
available through the NFU. Because these are such generic
operations, there is a good chance that they can be implemented
in forms that would be reusable across broad classes of
applications and so could be installed semi-statically. The

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

strategy of exposing general (if not completely generic)
operations relies on the assumption that this would allow
substantial sharing of operations without the need for application-
specific trusted code.

An endpoint that implemented the merge using NFU
operations for comparison and merging would manage the entire
state of the merge tree as it flowed from sources to sink. Every
buffer full of data would reside in an IBP allocation, as would any
intermediate state that might be maintained and communicated
between merge operations. Use of disk as well as RAM resources
to buffer larger amounts of data when required to adjust for
differences in flow, and the algorithms used to prefetch data back
to RAM in anticipation of its being used in an operation, would
be under the control of the endpoint, as would all replication of
data and control state required to support fault tolerance.
4.4.3 Edge services

The simplest model of Web and streaming media is to
deliver the same service to clients anywhere in the network from
a centralized server or a set of replicas. A slightly more complex
model has a centralized server deliver a generic service to an edge
device, or “middlebox,” that then reprocesses it to create the
ultimate end-user service. Examples include the transcoding of
video streams between formats or bitrates, and the construction of
personalized Web pages using databases of user-specific
information. One problem with the deployability of this
architecture is that it requires that middleboxes be ubiquitous
within the network and that the necessary business arrangements
be made between the operators of servers and the operators of
middlebox infrastructures.

When the creation of a standard middlebox framework was
addressed by the IETF OPES Application Area Working Group,
the IAB was very concerned about the interposition of an active
agent between the client and server [15, 16]. The need to maintain
control and accountability gave rise to many caveats regarding the
requirement that one of the two endpoints authorize any edge
service, and the need to alert the client when an edge service is
applied to the output of the server. The fundamental problem is
that the introduction into the system of an agent that is neither the
client nor the server creates the possibility that both would act in
the interest of some third party whose services have not been
explicitly invoked.

Given that edge services are simple enough to be
implemented using atomic operations, LoNC makes it possible for
either the server, or the client, or both, to implement edge services
using the NFU. The question of authorization becomes moot,
since there is no active agent other than the client and the server.
4.4.4 Distributed data queries

The Web has given rise to a highly decentralized mode of
data management in which many individual producers store their
data locally in a manner that is globally visible. Then, indexing
services such as search engines scan the visible data and create
indices against which later queries are executed. The creation of
global indices is a massive job, requiring supercomputer-scale
processing power and storage capacity. For this reason, querying
of global data is only possible through expensive and unwieldy
infrastructures such as those deployed by Google and other search
engines, and queries that fall outside of the scope of their indices
are impossible for the average user or project. Other examples of
such global query infrastructures are peer-to-peer [17, 18].

An alternative architecture is to allow ad hoc queries to be
made directly against distributed data, using a massively parallel
NFU infrastructure that is located on or close to the systems that
store the data. In this model, indices can be constructed on the fly
and maintained for as long as they are useful to a single user or to
a community. The level of resources required to build global
indices is hard to manage only when it is centralized and owned
by a single project or company. The scale required to manage
substantial subcollections of the entire Web will be the size that
fits easily into a globally provisioned LoNC infrastructure.

5. CONCLUSION
In this paper we have shown how Logistical Networking can

be extended beyond its origin as an end-to-end approach to
network storage to include network computation. The result
combines data transfer (bandwidth), data persistence (storage) and
data transformation (computation) in a uniform model of state
management that, because it is designed for scalability using the
end-to-end paradigm, can be applied to many difficult problems
in wide area computation. Yet the very fact that this approach
tries to synthesize all these elements in one common scheme has
led some to question whether or not this work belongs to the field
of Networking at all, rather than some other field of distributed
systems. We have two answers to this query, which, taken
together, help to put these ideas in a wider perspective.

In the first place, Logistical Networking borrows from the
fundamental principles of Wide Area Networking, which seems to
us to be the reason that it has always been best understood by the
networking community. One way to characterize the field of
Wide Area Networking is to say that it encompasses the subset of
distributed systems that is restricted to those that scale globally.
In other areas of Distributed Systems, such as distributed
databases or telecollaboration, scalability is a virtue that designers
strive for, but a system that is less scalable can still hope to fill an
important niche. By contrast, in Wide Area Networking
scalability has been taken as a fundamental requirement for
architectural acceptability from the outset of the design process.

Logistical Networking likewise embraces scalability as a
defining characteristic. We seek to broaden the interpretation of
the end-to-end principles, which we view as necessary guides to
achieving scalability, to services other than the undelayed and
unmodified delivery of bits. By putting those principles first, we
have derived a design for ubiquitous infrastructure that has the
familiar limitations of weak semantics, but which includes storage
and computation and, arguably, will scale.

In the second place, Logistical Networking seeks to create a
unified framework by exploiting the commonality that exists
between storage, networking and computation; it therefore draws
on possibilities that fall outside any one these fields when they are
considered in isolation from one another. At the heart of the
underlying analysis is an unremarkable observation: the state of
every computer system consists of data that is stored, except when
it is either propagating along a datapath or being transformed by
a processor.

From this common starting point, however, the engineering
of systems has diverged:
� Storage focuses on buffers that can maintain large amounts

of data for long periods of time.
� Networking focuses on the “fast path” that passes data

quickly between wide area data paths.

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

� Computing focuses on very powerful mechanisms for
transforming stored state.
Based on these differences in implementation, practitioners

in each area have come to distinguish their fields in terms of
constructs that do not exist in the others:
� Storage systems implement “files” that can be stored

indefinitely with great fidelity.
� Networks implement “datagrams” that have a source, a

destination and a speed of transmission.
� Computing implements “processes” that have an initial state

and inputs, maintain intermediate state, and produce output.
Constructs such as these have been highly valuable as an aid

in dealing with the complexity of the underlying hardware
systems and the huge numbers of possible states that they can
assume. At times, implementations that enshrine these constructs
have been seen as the key to achieving performance, by allowing
the optimization of interactions between components along the
critical path.

Yet sometimes such abstractions constrain the thinking and
the implementation strategies of architects. History shows that
when this happens, the way to new functionality, or even to the
highest performance, can lie in looking past the constructs to the
components, and working directly with them. Examples of such
successful reductionism abound: load/store architecture (e.g. CDC
6600), primitive OS kernels (e.g. Unix), RISC architecture (e.g.
MIPS) and store-and-forward wide area networking (e.g. IP). In
each case, functionality is moved from a lower layer to a higher
layer of the infrastructure, with a greater burden of scheduling
and control being placed on the latter. Once the opportunity for
architectural innovation is identified, the question is not whether
it is “right” or “wrong,” but whether it has significant advantages
from a systems engineering point of view.

Logistical Network Computing views all computer systems
as data stored in buffers that can be maintained, or moved to other
(possibly distant) buffers, or transformed. From this point of
view, a block of data sitting on a disk can be treated as a long-
lived datagram that is not currently going anywhere; and similarly
a datagram passing through a router can be seen as a process
whose pages extend over space but are not transformed. By
understanding the commonality between these constructs, we
hope to define a unified framework without artificial boundaries
or “balkanization.” If this approach were to succeed, would such
a unified field of endeavor, focused on scalability as its principle
design criterion, be what we now call “Networking?” Our answer
is yes, but it would also be much more.

6. Related Work
Logistical Network Computing touches on most aspects of

resource management for wide area distributed systems, and so it
has an overlap with most Distributed Operating System projects.
The important categories are remote job execution [19], remote
procedure call [20], state replication for fault tolerance and
mobile code and agent infrastructures [21]. While this list is not
exhaustive, space restrictions prevent us from giving a more
complete account.

The area of Active Networks [4] is obviously very closely
related to Logistical Networking because it also seeks to use the
storage and computational resources of intermediate nodes to
implement innovative services. As we have discussed at various

points in the paper, the difference between the two is that Active
Networks takes the step of placing an unbounded process
execution at an intermediate node, which has the effect,
predictable by reference to the end-to-end principles, of limiting
the scalability of the system. Avoiding this compromise is the
defining goal of Logistical Networking.

Calvert, Griffioen and Wen [22] have developed Ephemeral
State Processing as a mechanism to maintain persistent state at IP
routers and perform operations on it. As with Logistical Network
Computing, they followed the design principles of IP to create an
architecture that conforms to the end-to-end principles: storage
allocations are limited in size and duration, instructions are
restricted to a limited set installed on the router, and both
functions are best effort. However the scale of their ephemeral
state is orders of magnitude smaller than the storage supported by
Logistical Network Computing: storage allocations are limited to
single 64 bit words stored for 10 seconds; primitive operations
analogous to individual machine instructions act on one or two
stored words. While this greatly reduces the problem of
scalability, it also restricts the applicability of their approach to
very simple services.

The other area of Distributed Systems that comes closest to
the principles and methods of Logistical Networking is peer-to-
peer. Peer-to-peer computing [13] systems differ from Logistical
Network Computing because they tend to be application-specific
and therefore not to be appropriate for deployment on common
infrastructure. Each application — SETI@home, folding@home,
etc.— distributes its own computational processes to run on end
user workstations, and so creates a separate non-interoperable
infrastructure. Attempts to create generic peer-to-peer computing
platforms, such as Entropia’s, run in to the problem that the
mobile code that runs on it must be trusted, so scalability is
limited to corporate intranets.

7. Acknowledgements
The authors would like to acknowledge the work of Alex

Bassi, Jeremy Millar and Yong Zheng in the prototyping and
implementation of the NFU-enabled depot.

8. REFERENCES
[1] D. Atkins, K. Droegemeier, S. Feldman, H. Garcia-

Molina, M. Klein, P. Messina, D. Messerschmitt, J.
Ostriker, and M. Wright, "Revolutionizing Science and
Engineering through Cyberinfrastructure: Report of the
National Science Foundation Blue-Ribbon Panel on
Cyberinfrastructure," Panel Report, January, 2003.
http://www.communitytechnology.org/nsf_ci_report/.

[2] J. H. Saltzer, D. P. Reed, and D. D. Clark, "End-to-End
Arguments in System Design," ACM Transactions on
Computer Systems, vol. 2, no. 4, pp. 277-288,
November, 1984.

[3] M. Beck, T. Moore, and J. S. Plank, "An End-to-end
Approach to Globally Scalable Network Storage," in
Proceedings of ACM Sigcomm 2002. Pittsburgh, PA:
Association for Computing Machinery, 2002.

[4] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wethrall, and G. J. Minden, "A Survey of Active
Network Research," IEEE Communications Magazine,
vol. 35, no. 1, pp. 80-86, January 1997, 1997.

[5] D. P. Reed, J. H. Saltzer, and D. D. Clark, "Comment
on Active Networking and End-to-End Arguments,"

To be presented at the Workshop on Future Directions in Network Architecture (FDNA’03),
An ACM SIGCOMM 2003 Workshop, August 27, 2003, Karlsruhe, Germany.

IEEE Network, vol. 12, no. 3, pp. 69-71, May/June,
1998.

[6] M. Beck, T. Moore, J. Plank, and M. Swany,
"Logistical Networking: Sharing More Than the Wires,"
in Active Middleware Services, vol. 583, The Kluwer
International Series in Engineering and Computer
Science, S. Hariri, C. Lee, and C. Raghavendra, Eds.
Boston: Kluwer Academic Publishers, 2000.

[7] J. S. Plank, A. Bassi, M. Beck, T. Moore, M. Swany,
and R. Wolski, "Managing Data Storage in the
Network," IEEE Internet Computing, vol. 5, no. 5, pp.
50-58, September/October, 2001.
http://computer.org/internet/ic2001/w5toc.htm.

[8] J. Carter, P. Cao, M. Dahlin, M. Scott, M. Shapiro, and
W. Zwaenepoel, "Distributed State Management,"
Report of the NSF Workshop on Future Directions for
Systems Research,, July 31, 1997.
http://www.cs.utah.edu/~retrac/nsf-workshop-
report.html.

[9] J. Dennis and E. V. Horn, "Programming semantics for
multiprogrammed computations," Communications of
the ACM, vol. 9, no. 3, pp. 143-155, March, 1966.

[10] A. Bassi, M. Beck, and T. Moore, "Mobile Management
of Network Files," in Third Annual International
Workshop on Active Middleware Services (AMS 2001).
San Franscisco, CA: Kluwer Academic Publishers,
2001, pp. 106-115.

[11] N. Carriero and D. Gelernter, "Linda in Context,"
Communications of the ACM, vol. 32, no. 4, pp. 444-
459,1989.

[12] D. H. J. Epema, M. Livny, R. v. Dantzig, X. Evers, and
J. Pruyne, "A worldwide flock of condors : Load
sharing among workstation clusters," Journal on Future
Generations of Computer Systems, vol. 12 1996.

[13] A. Oram, "Peer-to-Peer: Harnessing the Power of
Disruptive Technologies." Sebastopol, CA: O'Reilly &
Associates, 2001, pp. 448.

 [14] W. D. Hillis, "New Computer Architectures and Their
Relationship to Physics or Why Computer Science is
No Good," International Journal of Theoretical
Physics, vol. 21, no. 3/4, pp. 255-262,1982.

[15] A. Barbir and A. Rousskov, "OPES Treatment of IAB
Considerations," IETF, Internet Draft, draft-ietf-opes-
iab-00, June 12, 2003. http://www.ietf.org/internet-
drafts/draft-ietf-opes-iab-00.txt.

[16] D. D. Clark, J. Wroclawski, K. Sollins, and R. Braden,
"Tussle in Cyberspace: Defining Tomorrow's Internet,"
in Proceedings of ACM Sigcomm 2002. Pittsburgh, PA:
Association for Computing Machinery, 2002.

[17] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H.
Weatherspoon, and J. Kubiatowicz, "Maintenance-Free
Global Data Storage," IEEE Internet Computing, vol. 5,
no. 5, pp. 40-49, September/October, 2001.
http://computer.org/internet/ic2001/w5toc.htm.

[18] D. Anderson and J. Kubiatowicz, "The Worldwide
Computer," Scientific American, vol. 286, no. 3, pp. 40-
47, March, 2002.

[19] I. Foster and C. Kesselman, "The Grid: Blueprint for a
New Computing Infrastructure," Morgan Kaufman
Publishers, 1999, pp. 677.

[20] R. Srinivasan, "Remote Proceedure Call Protocol
Specification, Version 2," IETF, RFC 1831, August,
1995.
http://www.ietf.org/rfc/rfc1831.txt?number=1831.

[21] E. A. Brewer, R. H. Katz, E. Amir, H. Balakrishnan, Y.
Chawathe, A. Fox, S. D. Gribble, T. Hodes, G. Nguyen,
V. Padmanabhan, M. Stemm, S. Seshan, and T.
Henderson, "A Network Architecture for
Heterogeneous Mobile Computing," IEEE Personal
Communications Magazine, vol. 5, no. 5, pp. 8-24,
October, 1998.

[22] K. L. Calvert, J. Griffioen, and S. Wen, "Lightweight
Network Support for Scalable End-to-End Services," in
Proceedings of ACM Sigcomm 2002. Pittsburgh, PA:
Association for Computing Machinery, 2002.

	INTRODUCTION
	Building on Logistical Networking
	SCALABILITY OF NETWORK COMPUTATION
	Availability
	Fragmentation
	Statelessness
	Correctness
	Security

	THE NFU AND THE EXNODE
	A Generic Network Computing Service
	A Data Structure for the Flexible Aggregation of Network Computation
	Pipelining for NFU performance
	NFU Scenarios
	Filtering a stream of frames
	Merging streams of records
	Edge services
	Distributed data queries

	CONCLUSION
	Related Work
	Acknowledgements
	REFERENCES

