Cross-Domain Cooperation for Small Clients

Amy S. Hughes
Joe Touch
USC/ISI
Overview

- Problem: DNS overhead
- Solution: Web-DNS Cooperation
- Experiment: Squid log analysis
- Conclusions
- Future Work
DNS Overhead in Web Transactions

- DNS request is a large part of web transaction
- DNS request dominates as:
 - Bandwidth increases
 - Persistent connections reduce overhead
 - Latency increases

\[
\frac{C}{A + B + C} < \frac{C}{A + B + C}
\]

- DNS is multiple RTTs
Web Connection Components
DNS overhead with low latency

LAN/remote requests

LAN/local requests
DNS overhead with high latency

ISDN/remote requests

ISDN/local requests
DNS Reuse and Costs

- Squid logs: 10-15% DNS misses
- 2MB cache upper bound
Cache Anticipation

- **Web Cache**
 - Request stream related to item content
 - Anticipation possible

- **DNS Cache**
 - No item relation to request stream
 - No anticipation opportunity
Web-DNS Cooperation

- **Opportunity**
 - Web request requires DNS information
 - Cooperation possible

- **Solution**
 - DNS cache on local client
 - Web lookahead to anticipate DNS requests
DNS Anticipated Cache Size

DNS Cache Size / Time
DNS Misses and Reduction

DNS Miss Rate

Miss Rate Change
DNS Miss Reduction

Anticipation Benefit

Magnification of MISS Rate Change
Prior and Related Work

- Web Log Analysis
- Web Anticipation
- Web Cooperation
 - Squid
 - LSAM
 - Adaptive Web Caching
Conclusions

- DNS caches must be local on client machines to be useful
 - 90% benefit
 - esp on ISDN connections

- DNS-Web cooperation needs more exploration
 - 15% reduced misses
 - 3x space increase (<6MB total)
Future Work

- Analyze real-time client traces
 - Squid logs wrong place in cache hierarchy
 - Real-time tracing allows examination of time components

- Define DNS hits and misses
 - Some DNS misses are partial hits due to multiple RTTs

- Implementation of Cross-Domain system
 - Measure real benefits
 - Examine DNS aggregation